Files
krata/crates/runtime/src/power.rs
Alex Zenla 1cf03a460e fix(idm): reimplement packet processing algorithm (#330)
* chore(xen): rewrite event channel code

* fix(idm): repair idm bugs on the file backend
2024-08-13 23:18:27 +00:00

178 lines
5.5 KiB
Rust

use anyhow::Result;
use indexmap::IndexMap;
use log::info;
use xencall::sys::{CpuId, SysctlCputopo};
use crate::RuntimeContext;
#[derive(Clone)]
pub struct PowerManagementContext {
pub context: RuntimeContext,
}
#[derive(Clone, Copy, Debug)]
pub enum CpuClass {
Standard,
Performance,
Efficiency,
}
#[derive(Clone, Copy, Debug)]
pub struct CpuTopologyInfo {
pub core: u32,
pub socket: u32,
pub node: u32,
pub thread: u32,
pub class: CpuClass,
}
fn labeled_topology(input: &[SysctlCputopo]) -> Vec<CpuTopologyInfo> {
let mut cores: IndexMap<(u32, u32, u32), Vec<CpuTopologyInfo>> = IndexMap::new();
let mut pe_cores = false;
let mut last: Option<SysctlCputopo> = None;
for item in input {
if cores.is_empty() {
cores.insert(
(item.core, item.socket, item.node),
vec![CpuTopologyInfo {
core: item.core,
socket: item.socket,
thread: 0,
node: item.node,
class: CpuClass::Standard,
}],
);
last = Some(*item);
continue;
}
if last
.map(|last| {
item.core
.checked_sub(last.core)
.map(|diff| diff >= 3)
.unwrap_or(false)
})
.unwrap_or(false)
{
// detect if performance cores seem to be kicking in.
if let Some(last) = last {
if let Some(list) = cores.get_mut(&(last.core, last.socket, last.node)) {
for other in list {
other.class = CpuClass::Performance;
}
}
}
let list = cores
.entry((item.core, item.socket, item.node))
.or_default();
for old in &mut *list {
old.class = CpuClass::Performance;
}
list.push(CpuTopologyInfo {
core: item.core,
socket: item.socket,
thread: 0,
node: item.node,
class: CpuClass::Performance,
});
pe_cores = true;
} else if pe_cores && last.map(|last| item.core == last.core + 1).unwrap_or(false) {
// detect efficiency cores if P/E cores are in use.
if let Some(last) = last {
if let Some(list) = cores.get_mut(&(last.core, last.socket, last.node)) {
for other in list {
other.class = CpuClass::Efficiency;
}
}
}
let list = cores
.entry((item.core, item.socket, item.node))
.or_default();
list.push(CpuTopologyInfo {
core: item.core,
socket: item.socket,
thread: 0,
node: item.node,
class: CpuClass::Efficiency,
});
} else {
let list = cores
.entry((item.core, item.socket, item.node))
.or_default();
if list.is_empty() {
list.push(CpuTopologyInfo {
core: item.core,
socket: item.socket,
thread: 0,
node: item.node,
class: CpuClass::Standard,
});
} else {
list.push(CpuTopologyInfo {
core: item.core,
socket: item.socket,
thread: 0,
node: item.node,
class: list
.first()
.map(|first| first.class)
.unwrap_or(CpuClass::Standard),
});
}
}
last = Some(*item);
}
for threads in cores.values_mut() {
for (index, thread) in threads.iter_mut().enumerate() {
thread.thread = index as u32;
}
}
cores.into_values().flatten().collect::<Vec<_>>()
}
impl PowerManagementContext {
/// Get the CPU topology, with SMT awareness.
/// Also translates Intel p-core/e-core nonsense: non-sequential core identifiers
/// are treated as p-cores, while e-cores behave as standard cores.
/// If there is a p-core/e-core split, then CPU class will be defined as
/// `CpuClass::Performance` or `CpuClass::Efficiency`, else `CpuClass::Standard`.
pub async fn cpu_topology(&self) -> Result<Vec<CpuTopologyInfo>> {
let xen_topology = self.context.xen.call.cpu_topology().await?;
let logical_topology = labeled_topology(&xen_topology);
Ok(logical_topology)
}
/// Enable or disable SMT awareness in the scheduler.
pub async fn set_smt_policy(&self, enable: bool) -> Result<()> {
self.context
.xen
.call
.set_turbo_mode(CpuId::All, enable)
.await
.unwrap_or_else(|error| {
info!("non-fatal error while setting SMT policy: {:?}", error);
});
Ok(())
}
/// Set scheduler policy name.
pub async fn set_scheduler_policy(&self, policy: impl AsRef<str>) -> Result<()> {
self.context
.xen
.call
.set_cpufreq_gov(CpuId::All, policy)
.await
.unwrap_or_else(|error| {
info!(
"non-fatal error while setting scheduler policy: {:?}",
error
);
});
Ok(())
}
}