mirror of
https://github.com/edera-dev/sprout.git
synced 2025-12-19 10:10:17 +00:00
193 lines
6.2 KiB
Rust
193 lines
6.2 KiB
Rust
|
|
/*
|
||
|
|
* // Copyright (c) Radzivon Bartoshyk 3/2025. All rights reserved.
|
||
|
|
* //
|
||
|
|
* // Redistribution and use in source and binary forms, with or without modification,
|
||
|
|
* // are permitted provided that the following conditions are met:
|
||
|
|
* //
|
||
|
|
* // 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
|
* // list of conditions and the following disclaimer.
|
||
|
|
* //
|
||
|
|
* // 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
|
* // this list of conditions and the following disclaimer in the documentation
|
||
|
|
* // and/or other materials provided with the distribution.
|
||
|
|
* //
|
||
|
|
* // 3. Neither the name of the copyright holder nor the names of its
|
||
|
|
* // contributors may be used to endorse or promote products derived from
|
||
|
|
* // this software without specific prior written permission.
|
||
|
|
* //
|
||
|
|
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
|
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
|
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
|
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
|
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
|
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
|
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
|
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
|
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*/
|
||
|
|
use crate::gamma::{pq_from_linearf, pq_to_linearf};
|
||
|
|
use crate::{Matrix3f, Rgb, Vector3f, Xyz};
|
||
|
|
|
||
|
|
const CROSSTALK: Matrix3f = Matrix3f {
|
||
|
|
v: [[0.92, 0.04, 0.04], [0.04, 0.92, 0.04], [0.04, 0.04, 0.92]],
|
||
|
|
};
|
||
|
|
|
||
|
|
const HPE_LMS: Matrix3f = Matrix3f {
|
||
|
|
v: [
|
||
|
|
[0.4002, 0.7076, -0.0808],
|
||
|
|
[-0.2263, 1.1653, 0.0457],
|
||
|
|
[0f32, 0f32, 0.9182],
|
||
|
|
],
|
||
|
|
};
|
||
|
|
|
||
|
|
const XYZ_TO_LMS: Matrix3f = CROSSTALK.mat_mul_const(HPE_LMS);
|
||
|
|
|
||
|
|
const LMS_TO_XYZ: Matrix3f = XYZ_TO_LMS.inverse();
|
||
|
|
|
||
|
|
const L_LMS_TO_ICTCP: Matrix3f = Matrix3f {
|
||
|
|
v: [
|
||
|
|
[2048. / 4096., 2048. / 4096., 0.],
|
||
|
|
[6610. / 4096., -13613. / 4096., 7003. / 4096.],
|
||
|
|
[17933. / 4096., -17390. / 4096., -543. / 4096.],
|
||
|
|
],
|
||
|
|
};
|
||
|
|
|
||
|
|
const ICTCP_TO_L_LMS: Matrix3f = L_LMS_TO_ICTCP.inverse();
|
||
|
|
|
||
|
|
#[derive(Copy, Clone, Default, PartialOrd, PartialEq)]
|
||
|
|
pub struct ICtCp {
|
||
|
|
/// Lightness
|
||
|
|
pub i: f32,
|
||
|
|
/// Tritan
|
||
|
|
pub ct: f32,
|
||
|
|
/// Protan
|
||
|
|
pub cp: f32,
|
||
|
|
}
|
||
|
|
|
||
|
|
impl ICtCp {
|
||
|
|
#[inline]
|
||
|
|
pub const fn new(i: f32, ct: f32, cp: f32) -> ICtCp {
|
||
|
|
ICtCp { i, ct, cp }
|
||
|
|
}
|
||
|
|
|
||
|
|
/// Converts XYZ D65 to ICtCp
|
||
|
|
#[inline]
|
||
|
|
pub fn from_xyz(xyz: Xyz) -> ICtCp {
|
||
|
|
let lms = XYZ_TO_LMS.mul_vector(xyz.to_vector());
|
||
|
|
let lin_l = pq_from_linearf(lms.v[0]);
|
||
|
|
let lin_m = pq_from_linearf(lms.v[1]);
|
||
|
|
let lin_s = pq_from_linearf(lms.v[2]);
|
||
|
|
let ictcp = L_LMS_TO_ICTCP.mul_vector(Vector3f {
|
||
|
|
v: [lin_l, lin_m, lin_s],
|
||
|
|
});
|
||
|
|
ICtCp {
|
||
|
|
i: ictcp.v[0],
|
||
|
|
ct: ictcp.v[1],
|
||
|
|
cp: ictcp.v[2],
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/// Converts to [ICtCp] from linear light [Rgb]
|
||
|
|
///
|
||
|
|
/// Precompute forward matrix by [ICtCp::prepare_to_lms].
|
||
|
|
/// D65 white point is assumed.
|
||
|
|
#[inline]
|
||
|
|
pub fn from_linear_rgb(rgb: Rgb<f32>, matrix: Matrix3f) -> ICtCp {
|
||
|
|
let lms = matrix.mul_vector(rgb.to_vector());
|
||
|
|
let lin_l = pq_from_linearf(lms.v[0]);
|
||
|
|
let lin_m = pq_from_linearf(lms.v[1]);
|
||
|
|
let lin_s = pq_from_linearf(lms.v[2]);
|
||
|
|
let ictcp = L_LMS_TO_ICTCP.mul_vector(Vector3f {
|
||
|
|
v: [lin_l, lin_m, lin_s],
|
||
|
|
});
|
||
|
|
ICtCp {
|
||
|
|
i: ictcp.v[0],
|
||
|
|
ct: ictcp.v[1],
|
||
|
|
cp: ictcp.v[2],
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/// Converts [ICtCp] to [Rgb]
|
||
|
|
///
|
||
|
|
/// Precompute forward matrix by [ICtCp::prepare_to_lms] and then inverse it
|
||
|
|
#[inline]
|
||
|
|
pub fn to_linear_rgb(&self, matrix: Matrix3f) -> Rgb<f32> {
|
||
|
|
let l_lms = ICTCP_TO_L_LMS.mul_vector(Vector3f {
|
||
|
|
v: [self.i, self.ct, self.cp],
|
||
|
|
});
|
||
|
|
let gamma_l = pq_to_linearf(l_lms.v[0]);
|
||
|
|
let gamma_m = pq_to_linearf(l_lms.v[1]);
|
||
|
|
let gamma_s = pq_to_linearf(l_lms.v[2]);
|
||
|
|
|
||
|
|
let lms = matrix.mul_vector(Vector3f {
|
||
|
|
v: [gamma_l, gamma_m, gamma_s],
|
||
|
|
});
|
||
|
|
Rgb {
|
||
|
|
r: lms.v[0],
|
||
|
|
g: lms.v[1],
|
||
|
|
b: lms.v[2],
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/// Converts ICtCp to XYZ D65
|
||
|
|
#[inline]
|
||
|
|
pub fn to_xyz(&self) -> Xyz {
|
||
|
|
let l_lms = ICTCP_TO_L_LMS.mul_vector(Vector3f {
|
||
|
|
v: [self.i, self.ct, self.cp],
|
||
|
|
});
|
||
|
|
let gamma_l = pq_to_linearf(l_lms.v[0]);
|
||
|
|
let gamma_m = pq_to_linearf(l_lms.v[1]);
|
||
|
|
let gamma_s = pq_to_linearf(l_lms.v[2]);
|
||
|
|
|
||
|
|
let lms = LMS_TO_XYZ.mul_vector(Vector3f {
|
||
|
|
v: [gamma_l, gamma_m, gamma_s],
|
||
|
|
});
|
||
|
|
Xyz {
|
||
|
|
x: lms.v[0],
|
||
|
|
y: lms.v[1],
|
||
|
|
z: lms.v[2],
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/// Prepares RGB->LMS matrix
|
||
|
|
#[inline]
|
||
|
|
pub const fn prepare_to_lms(rgb_to_xyz: Matrix3f) -> Matrix3f {
|
||
|
|
XYZ_TO_LMS.mat_mul_const(rgb_to_xyz)
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
#[cfg(test)]
|
||
|
|
mod tests {
|
||
|
|
use super::*;
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn check_roundtrip() {
|
||
|
|
let xyz = Xyz::new(0.5, 0.4, 0.3);
|
||
|
|
let ictcp = ICtCp::from_xyz(xyz);
|
||
|
|
let r_xyz = ictcp.to_xyz();
|
||
|
|
assert!((r_xyz.x - xyz.x).abs() < 1e-4);
|
||
|
|
assert!((r_xyz.y - xyz.y).abs() < 1e-4);
|
||
|
|
assert!((r_xyz.z - xyz.z).abs() < 1e-4);
|
||
|
|
}
|
||
|
|
|
||
|
|
#[test]
|
||
|
|
fn check_roundtrip_rgb() {
|
||
|
|
let rgb_to_xyz = Matrix3f {
|
||
|
|
v: [
|
||
|
|
[0.67345345, 0.165661961, 0.125096574],
|
||
|
|
[0.27903071, 0.675341845, 0.045627553],
|
||
|
|
[-0.00193137419, 0.0299795717, 0.797140181],
|
||
|
|
],
|
||
|
|
};
|
||
|
|
let prepared_matrix = ICtCp::prepare_to_lms(rgb_to_xyz);
|
||
|
|
let inversed_matrix = prepared_matrix.inverse();
|
||
|
|
let rgb = Rgb::new(0.5, 0.4, 0.3);
|
||
|
|
let ictcp = ICtCp::from_linear_rgb(rgb, prepared_matrix);
|
||
|
|
let r_xyz = ictcp.to_linear_rgb(inversed_matrix);
|
||
|
|
assert!((r_xyz.r - rgb.r).abs() < 1e-4);
|
||
|
|
assert!((r_xyz.g - rgb.g).abs() < 1e-4);
|
||
|
|
assert!((r_xyz.b - rgb.b).abs() < 1e-4);
|
||
|
|
}
|
||
|
|
}
|