add more documentation to some actions and configurations

This commit is contained in:
2025-10-19 21:44:05 -07:00
parent 354b5ec130
commit 08da6dd390
7 changed files with 102 additions and 0 deletions

View File

@@ -3,32 +3,56 @@ use anyhow::{Result, bail};
use serde::{Deserialize, Serialize};
use std::rc::Rc;
/// EFI chainloader action.
pub mod chainload;
/// Edera hypervisor action.
pub mod edera;
/// EFI console print action.
pub mod print;
/// Splash screen action.
#[cfg(feature = "splash")]
pub mod splash;
/// Declares an action that sprout can execute.
/// Actions allow configuring sprout's internal runtime mechanisms with values
/// that you can specify via other concepts.
///
/// Actions are the main work that Sprout gets done, like booting Linux.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct ActionDeclaration {
/// Chainload to another EFI application.
/// This allows you to load any EFI application, either to boot an operating system
/// or to perform more EFI actions and return to sprout.
#[serde(default)]
pub chainload: Option<chainload::ChainloadConfiguration>,
/// Print a string to the EFI console.
#[serde(default)]
pub print: Option<print::PrintConfiguration>,
/// Show an image as a fullscreen splash screen.
#[serde(default)]
#[cfg(feature = "splash")]
pub splash: Option<splash::SplashConfiguration>,
/// Boot the Edera hypervisor and the root operating system.
/// This action is an extension on top of the Xen EFI stub that
/// is specific to Edera.
#[serde(default, rename = "edera")]
pub edera: Option<edera::EderaConfiguration>,
}
/// Execute the action specified by `name` which should be stored in the
/// root context of the provided `context`. This function may not return
/// if the provided action executes an operating system or an EFI application
/// that does not return control to sprout.
pub fn execute(context: Rc<SproutContext>, name: impl AsRef<str>) -> Result<()> {
// Retrieve the action from the root context.
let Some(action) = context.root().actions().get(name.as_ref()) else {
bail!("unknown action '{}'", name.as_ref());
};
// Finalize the context and freeze it.
let context = context.finalize().freeze();
// Execute the action.
if let Some(chainload) = &action.chainload {
chainload::chainload(context.clone(), chainload)?;
return Ok(());
@@ -45,5 +69,7 @@ pub fn execute(context: Rc<SproutContext>, name: impl AsRef<str>) -> Result<()>
return Ok(());
}
// If we reach here, we don't know how to execute the action that was configured.
// This is likely unreachable, but we should still return an error just in case.
bail!("unknown action configuration");
}

View File

@@ -9,24 +9,37 @@ use std::rc::Rc;
use uefi::CString16;
use uefi::proto::loaded_image::LoadedImage;
/// The configuration of the chainload action.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct ChainloadConfiguration {
/// The path to the image to chainload.
/// This can be a Linux EFI stub (vmlinuz usually) or a standard EFI executable.
pub path: String,
/// The options to pass to the image.
/// The options are concatenated by a space and then passed to the EFI application.
#[serde(default)]
pub options: Vec<String>,
/// An optional path to a Linux initrd.
/// This uses the [LINUX_EFI_INITRD_MEDIA_GUID] mechanism to load the initrd into the EFI stack.
/// For Linux, you can also use initrd=\path\to\initrd as an option, but this option is
/// generally better and safer as it can support additional load options in the future.
#[serde(default, rename = "linux-initrd")]
pub linux_initrd: Option<String>,
}
/// Executes the chainload action using the specified `configuration` inside the provided `context`.
pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfiguration) -> Result<()> {
// Retrieve the current image handle of sprout.
let sprout_image = uefi::boot::image_handle();
// Resolve the path to the image to chainload.
let resolved = utils::resolve_path(
context.root().loaded_image_path()?,
&context.stamp(&configuration.path),
)
.context("unable to resolve chainload path")?;
// Load the image to chainload.
let image = uefi::boot::load_image(
sprout_image,
uefi::boot::LoadImageSource::FromDevicePath {
@@ -36,9 +49,11 @@ pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfigurat
)
.context("unable to load image")?;
// Open the LoadedImage protocol of the image to chainload.
let mut loaded_image_protocol = uefi::boot::open_protocol_exclusive::<LoadedImage>(image)
.context("unable to open loaded image protocol")?;
// Stamp and concatenate the options to pass to the image.
let options = configuration
.options
.iter()
@@ -46,6 +61,10 @@ pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfigurat
.collect::<Vec<_>>()
.join(" ");
// Pass the options to the image, if any are provided.
// The holder must drop at the end of this function to ensure the options are not leaked,
// and the holder here ensures it outlives the if block here, as a pointer has to be
// passed to the image. This has been hand-validated to be safe.
let mut options_holder: Option<Box<CString16>> = None;
if !options.is_empty() {
let options = Box::new(
@@ -80,15 +99,28 @@ pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfigurat
initrd_handle = Some(handle);
}
// Retrieve the base and size of the loaded image to display.
let (base, size) = loaded_image_protocol.info();
info!("loaded image: base={:#x} size={:#x}", base.addr(), size);
// Start the loaded image.
// This call might return, or it may pass full control to another image that will never return.
// Capture the result to ensure we can return an error if the image fails to start, but only
// after the optional initrd has been unregistered.
let result = uefi::boot::start_image(image).context("unable to start image");
// Unregister the initrd if it was registered.
if let Some(initrd_handle) = initrd_handle
&& let Err(error) = initrd_handle.unregister()
{
error!("unable to unregister linux initrd: {}", error);
}
// Assert there was no error starting the image.
result.context("unable to start image")?;
// Explicitly drop the option holder to clarify the lifetime.
drop(options_holder);
// Return control to sprout.
Ok(())
}

View File

@@ -3,12 +3,15 @@ use anyhow::Result;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
/// The configuration of the print action.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct PrintConfiguration {
/// The text to print to the console.
#[serde(default)]
pub text: String,
}
/// Executes the print action with the specified `configuration` inside the provided `context`.
pub fn print(context: Rc<SproutContext>, configuration: &PrintConfiguration) -> Result<()> {
println!("{}", context.stamp(&configuration.text));
Ok(())

View File

@@ -35,12 +35,26 @@ pub struct RootConfiguration {
/// inside the sprout context.
#[serde(default)]
pub extractors: BTreeMap<String, ExtractorDeclaration>,
/// Declares the actions that can execute operations for sprout.
/// Actions are executable modules in sprout that take in specific structured values.
/// Actions are responsible for ensuring that passed strings are stamped to replace values
/// at runtime.
/// Each action has a name that can be referenced by other base concepts like entries.
#[serde(default)]
pub actions: BTreeMap<String, ActionDeclaration>,
/// Declares the entries that are displayed on the boot menu. These entries are static
/// but can still use values from the sprout context.
#[serde(default)]
pub entries: BTreeMap<String, EntryDeclaration>,
/// Declares the generators that are used to generate entries at runtime.
/// Each generator has its own logic for generating entries, but generally they intake
/// a template entry and stamp that template entry over some values determined at runtime.
/// Each generator has an associated name used to differentiate it across sprout.
#[serde(default)]
pub generators: BTreeMap<String, GeneratorDeclaration>,
/// Configures the various phases of sprout. This allows you to hook into specific parts
/// of the boot process to execute actions, for example, you can show a boot splash during
/// the early phase.
#[serde(default)]
pub phases: PhasesConfiguration,
}

View File

@@ -8,8 +8,14 @@ use std::rc::Rc;
use uefi::boot::SearchType;
use uefi::proto::device_path::LoadedImageDevicePath;
/// Declares a driver configuration.
/// Drivers allow extending the functionality of Sprout.
/// Drivers are loaded at runtime and can provide extra functionality like filesystem support.
/// Drivers are loaded by their name, which is used to reference them in other concepts.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct DriverDeclaration {
/// The filesystem path to the driver.
/// This file should be an EFI executable that can be located and executed.
pub path: String,
}

View File

@@ -10,14 +10,33 @@ use std::rc::Rc;
pub mod bls;
pub mod matrix;
/// Declares a generator configuration.
/// Generators allow generating entries at runtime based on a set of data.
#[derive(Serialize, Deserialize, Default, Clone)]
pub struct GeneratorDeclaration {
/// Matrix generator configuration.
/// Matrix allows you to specify multiple value-key values as arrays.
/// This allows multiplying the number of entries by any number of possible
/// configuration options. For example,
/// data.x = ["a", "b"]
/// data.y = ["c", "d"]
/// would generate an entry for each of these combinations:
/// x = a, y = c
/// x = a, y = d
/// x = b, y = c
/// x = b, y = d
#[serde(default)]
pub matrix: Option<MatrixConfiguration>,
/// BLS generator configuration.
/// BLS allows you to pass a filesystem path that contains a set of BLS entries.
/// It will generate a sprout entry for every supported BLS entry.
#[serde(default)]
pub bls: Option<BlsConfiguration>,
}
/// Runs the generator specified by the `generator` option.
/// It uses the specified `context` as the parent context for
/// the generated entries, injecting more values if needed.
pub fn generate(
context: Rc<SproutContext>,
generator: &GeneratorDeclaration,

View File

@@ -37,9 +37,11 @@ pub struct PhaseConfiguration {
pub fn phase(context: Rc<SproutContext>, phase: &[PhaseConfiguration]) -> Result<()> {
for item in phase {
let mut context = context.fork();
// Insert the values into the context.
context.insert(&item.values);
let context = context.freeze();
// Execute all the actions in this phase configuration.
for action in item.actions.iter() {
actions::execute(context.clone(), action)
.context(format!("unable to execute action '{}'", action))?;