chore(code): move crates/sprout to crates/boot and name it edera-sprout-boot

This commit is contained in:
2025-11-03 22:52:54 -05:00
parent 9a803ad355
commit 532fb38d5a
36 changed files with 5 additions and 5 deletions

View File

@@ -0,0 +1,42 @@
use crate::context::SproutContext;
use alloc::rc::Rc;
use anyhow::{Context, Result, bail};
/// EFI chainloader action.
pub mod chainload;
/// Edera hypervisor action.
pub mod edera;
/// EFI console print action.
pub mod print;
/// Execute the action specified by `name` which should be stored in the
/// root context of the provided `context`. This function may not return
/// if the provided action executes an operating system or an EFI application
/// that does not return control to sprout.
pub fn execute(context: Rc<SproutContext>, name: impl AsRef<str>) -> Result<()> {
// Retrieve the action from the root context.
let Some(action) = context.root().actions().get(name.as_ref()) else {
bail!("unknown action '{}'", name.as_ref());
};
// Finalize the context and freeze it.
let context = context
.finalize()
.context("unable to finalize context")?
.freeze();
// Execute the action.
if let Some(chainload) = &action.chainload {
chainload::chainload(context.clone(), chainload)?;
return Ok(());
} else if let Some(print) = &action.print {
print::print(context.clone(), print)?;
return Ok(());
} else if let Some(edera) = &action.edera {
edera::edera(context.clone(), edera)?;
return Ok(());
}
// If we reach here, we don't know how to execute the action that was configured.
// This is likely unreachable, but we should still return an error just in case.
bail!("unknown action configuration");
}

View File

@@ -0,0 +1,107 @@
use crate::context::SproutContext;
use crate::utils;
use alloc::boxed::Box;
use alloc::rc::Rc;
use anyhow::{Context, Result, bail};
use edera_sprout_config::actions::chainload::ChainloadConfiguration;
use eficore::bootloader_interface::BootloaderInterface;
use eficore::media_loader::MediaLoaderHandle;
use eficore::media_loader::constants::linux::LINUX_EFI_INITRD_MEDIA_GUID;
use eficore::shim::{ShimInput, ShimSupport};
use log::error;
use uefi::CString16;
use uefi::proto::loaded_image::LoadedImage;
/// Executes the chainload action using the specified `configuration` inside the provided `context`.
pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfiguration) -> Result<()> {
// Retrieve the current image handle of sprout.
let sprout_image = uefi::boot::image_handle();
// Resolve the path to the image to chainload.
let resolved = eficore::path::resolve_path(
Some(context.root().loaded_image_path()?),
&context.stamp(&configuration.path),
)
.context("unable to resolve chainload path")?;
// Load the image to chainload using the shim support integration.
// It will determine if the image needs to be loaded via the shim or can be loaded directly.
let image = ShimSupport::load(sprout_image, ShimInput::ResolvedPath(&resolved))?;
// Open the LoadedImage protocol of the image to chainload.
let mut loaded_image_protocol = uefi::boot::open_protocol_exclusive::<LoadedImage>(image)
.context("unable to open loaded image protocol")?;
// Stamp and combine the options to pass to the image.
let options =
utils::combine_options(configuration.options.iter().map(|item| context.stamp(item)));
// Pass the load options to the image.
// If no options are provided, the resulting string will be empty.
// The options are pinned and boxed to ensure that they are valid for the lifetime of this
// function, which ensures the lifetime of the options for the image runtime.
let options = Box::pin(
CString16::try_from(&options[..])
.context("unable to convert chainloader options to CString16")?,
);
if options.num_bytes() > u32::MAX as usize {
bail!("chainloader options too large");
}
// SAFETY: option size is checked to validate it is safe to pass.
// Additionally, the pointer is allocated and retained on heap, which makes
// passing the `options` pointer safe to the next image.
unsafe {
loaded_image_protocol
.set_load_options(options.as_ptr() as *const u8, options.num_bytes() as u32);
}
// Stamp the initrd path, if provided.
let initrd = configuration
.linux_initrd
.as_ref()
.map(|item| context.stamp(item));
// The initrd can be None or empty, so we need to collapse that into a single Option.
let initrd = utils::empty_is_none(initrd);
// If an initrd is provided, register it with the EFI stack.
let mut initrd_handle = None;
if let Some(linux_initrd) = initrd {
let content = eficore::path::read_file_contents(
Some(context.root().loaded_image_path()?),
&linux_initrd,
)
.context("unable to read linux initrd")?;
let handle =
MediaLoaderHandle::register(LINUX_EFI_INITRD_MEDIA_GUID, content.into_boxed_slice())
.context("unable to register linux initrd")?;
initrd_handle = Some(handle);
}
// Mark execution of an entry in the bootloader interface.
BootloaderInterface::mark_exec(context.root().timer())
.context("unable to mark execution of boot entry in bootloader interface")?;
// Start the loaded image.
// This call might return, or it may pass full control to another image that will never return.
// Capture the result to ensure we can return an error if the image fails to start, but only
// after the optional initrd has been unregistered.
let result = uefi::boot::start_image(image);
// Unregister the initrd if it was registered.
if let Some(initrd_handle) = initrd_handle
&& let Err(error) = initrd_handle.unregister()
{
error!("unable to unregister linux initrd: {}", error);
}
// Assert there was no error starting the image.
result.context("unable to start image")?;
// Explicitly drop the options to clarify the lifetime.
drop(options);
// Return control to sprout.
Ok(())
}

View File

@@ -0,0 +1,138 @@
use crate::{
actions,
context::SproutContext,
utils::{self},
};
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use alloc::{format, vec};
use anyhow::{Context, Result};
use edera_sprout_config::actions::chainload::ChainloadConfiguration;
use edera_sprout_config::actions::edera::EderaConfiguration;
use eficore::media_loader::{
MediaLoaderHandle,
constants::xen::{
XEN_EFI_CONFIG_MEDIA_GUID, XEN_EFI_KERNEL_MEDIA_GUID, XEN_EFI_RAMDISK_MEDIA_GUID,
},
};
use log::error;
use uefi::Guid;
/// Builds a configuration string for the Xen EFI stub using the specified `configuration`.
fn build_xen_config(context: Rc<SproutContext>, configuration: &EderaConfiguration) -> String {
// Stamp xen options and combine them.
let xen_options = utils::combine_options(
configuration
.xen_options
.iter()
.map(|item| context.stamp(item)),
);
// Stamp kernel options and combine them.
let kernel_options = utils::combine_options(
configuration
.kernel_options
.iter()
.map(|item| context.stamp(item)),
);
// xen config file format is ini-like
[
// global section
"[global]".to_string(),
// default configuration section
"default=sprout".to_string(),
// configuration section for sprout
"[sprout]".to_string(),
// xen options
format!("options={}", xen_options),
// kernel options, stub replaces the kernel path
// the kernel is provided via media loader
format!("kernel=stub {}", kernel_options),
// required or else the last line will be ignored
"".to_string(),
]
.join("\n")
}
/// Register a media loader for some `text` with the vendor `guid`.
/// `what` should indicate some identifying value for error messages
/// like `config` or `kernel`.
/// Provides a [MediaLoaderHandle] that can be used to unregister the media loader.
fn register_media_loader_text(guid: Guid, what: &str, text: String) -> Result<MediaLoaderHandle> {
MediaLoaderHandle::register(guid, text.as_bytes().to_vec().into_boxed_slice())
.context(format!("unable to register {} media loader", what)) /* */
}
/// Register a media loader for the file `path` with the vendor `guid`.
/// `what` should indicate some identifying value for error messages
/// like `config` or `kernel`.
/// Provides a [MediaLoaderHandle] that can be used to unregister the media loader.
fn register_media_loader_file(
context: &Rc<SproutContext>,
guid: Guid,
what: &str,
path: &str,
) -> Result<MediaLoaderHandle> {
// Stamp the path to the file.
let path = context.stamp(path);
// Read the file contents.
let content =
eficore::path::read_file_contents(Some(context.root().loaded_image_path()?), &path)
.context(format!("unable to read {} file", what))?;
// Register the media loader.
let handle = MediaLoaderHandle::register(guid, content.into_boxed_slice())
.context(format!("unable to register {} media loader", what))?;
Ok(handle)
}
/// Executes the edera action which will boot the Edera hypervisor with the specified
/// `configuration` and `context`. This action uses Edera-specific Xen EFI stub functionality.
pub fn edera(context: Rc<SproutContext>, configuration: &EderaConfiguration) -> Result<()> {
// Build the Xen config file content for this configuration.
let config = build_xen_config(context.clone(), configuration);
// Register the media loader for the config.
let config = register_media_loader_text(XEN_EFI_CONFIG_MEDIA_GUID, "config", config)
.context("unable to register config media loader")?;
// Register the media loaders for the kernel.
let kernel = register_media_loader_file(
&context,
XEN_EFI_KERNEL_MEDIA_GUID,
"kernel",
&configuration.kernel,
)
.context("unable to register kernel media loader")?;
// Create a vector of media loaders to unregister on error.
let mut media_loaders = vec![config, kernel];
// Register the initrd if it is provided.
if let Some(initrd) = utils::empty_is_none(configuration.initrd.as_ref()) {
let initrd =
register_media_loader_file(&context, XEN_EFI_RAMDISK_MEDIA_GUID, "initrd", initrd)
.context("unable to register initrd media loader")?;
media_loaders.push(initrd);
}
// Chainload to the Xen EFI stub.
let result = actions::chainload::chainload(
context.clone(),
&ChainloadConfiguration {
path: configuration.xen.clone(),
options: vec![],
linux_initrd: None,
},
)
.context("unable to chainload to xen");
// Unregister the media loaders when an error happens.
for media_loader in media_loaders {
if let Err(error) = media_loader.unregister() {
error!("unable to unregister media loader: {}", error);
}
}
result
}

View File

@@ -0,0 +1,11 @@
use crate::context::SproutContext;
use alloc::rc::Rc;
use anyhow::Result;
use edera_sprout_config::actions::print::PrintConfiguration;
use log::info;
/// Executes the print action with the specified `configuration` inside the provided `context`.
pub fn print(context: Rc<SproutContext>, configuration: &PrintConfiguration) -> Result<()> {
info!("{}", context.stamp(&configuration.text));
Ok(())
}

View File

@@ -0,0 +1,57 @@
use anyhow::{Context, Result};
use edera_sprout_config::RootConfiguration;
use uefi::fs::FileSystem;
use uefi::proto::device_path::DevicePath;
use uefi::proto::media::fs::SimpleFileSystem;
/// bls: autodetect and configure BLS-enabled filesystems.
pub mod bls;
/// linux: autodetect and configure Linux kernels.
/// This autoconfiguration module should not be activated
/// on BLS-enabled filesystems as it may make duplicate entries.
pub mod linux;
/// windows: autodetect and configure Windows boot configurations.
pub mod windows;
/// Generate a [RootConfiguration] based on the environment.
/// Intakes a `config` to use as the basis of the autoconfiguration.
pub fn autoconfigure(config: &mut RootConfiguration) -> Result<()> {
// Find all the filesystems that are on the system.
let filesystem_handles =
uefi::boot::find_handles::<SimpleFileSystem>().context("unable to scan filesystems")?;
// For each filesystem that was detected, scan it for supported autoconfig mechanisms.
for handle in filesystem_handles {
// Acquire the device path root for the filesystem.
let root = {
uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to get root for filesystem")?
.to_boxed()
};
// Open the filesystem that was detected.
let filesystem = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(handle)
.context("unable to open filesystem")?;
// Trade the filesystem protocol for the uefi filesystem helper.
let mut filesystem = FileSystem::new(filesystem);
// Scan the filesystem for BLS supported configurations.
let bls_found = bls::scan(&mut filesystem, &root, config)
.context("unable to scan for bls configurations")?;
// If BLS was not found, scan for Linux configurations.
if !bls_found {
linux::scan(&mut filesystem, &root, config)
.context("unable to scan for linux configurations")?;
}
// Always look for Windows configurations.
windows::scan(&mut filesystem, &root, config)
.context("unable to scan for windows configurations")?;
}
Ok(())
}

View File

@@ -0,0 +1,103 @@
use crate::utils;
use alloc::string::ToString;
use alloc::{format, vec};
use anyhow::{Context, Result};
use edera_sprout_config::RootConfiguration;
use edera_sprout_config::actions::ActionDeclaration;
use edera_sprout_config::actions::chainload::ChainloadConfiguration;
use edera_sprout_config::entries::EntryDeclaration;
use edera_sprout_config::generators::GeneratorDeclaration;
use edera_sprout_config::generators::bls::BlsConfiguration;
use uefi::cstr16;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the BLS chainload action that will be used
/// by the BLS generator to chainload entries.
const BLS_CHAINLOAD_ACTION_PREFIX: &str = "bls-chainload-";
/// Scan the specified `filesystem` for BLS configurations.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
// BLS has a loader.conf file that can specify its own auto-entries mechanism.
let bls_loader_conf_path = Path::new(cstr16!("\\loader\\loader.conf"));
// BLS also has an entries directory that can specify explicit entries.
let bls_entries_path = Path::new(cstr16!("\\loader\\entries"));
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Whether we have a loader.conf file.
let has_loader_conf = filesystem
.try_exists(bls_loader_conf_path)
.context("unable to check for BLS loader.conf file")?;
// Whether we have an entries directory.
// We actually iterate the entries to see if there are any.
let has_entries_dir = filesystem
.read_dir(bls_entries_path)
.ok()
.and_then(|mut iterator| iterator.next())
.map(|entry| entry.is_ok())
.unwrap_or(false);
// Detect if a BLS supported configuration is on this filesystem.
// We check both loader.conf and entries directory as only one of them is required.
if !(has_loader_conf || has_entries_dir) {
return Ok(false);
}
// Generate a unique name for the BLS chainload action.
let chainload_action_name = format!("{}{}", BLS_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// BLS is now detected, generate a configuration for it.
let generator = BlsConfiguration {
entry: EntryDeclaration {
title: "$title".to_string(),
actions: vec![chainload_action_name.clone()],
..Default::default()
},
path: format!("{}\\loader", root),
};
// Generate a unique name for the BLS generator and insert the generator into the configuration.
config.generators.insert(
format!("auto-bls-{}", root_unique_hash),
GeneratorDeclaration {
bls: Some(generator),
..Default::default()
},
);
// Generate a chainload configuration for BLS.
// BLS will provide these values to us.
let chainload = ChainloadConfiguration {
path: format!("{}\\$chainload", root),
options: vec!["$options".to_string()],
linux_initrd: Some(format!("{}\\$initrd", root)),
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We had a BLS supported configuration, so return true.
Ok(true)
}

View File

@@ -0,0 +1,257 @@
use crate::utils;
use crate::utils::vercmp;
use alloc::collections::BTreeMap;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use alloc::{format, vec};
use anyhow::{Context, Result};
use edera_sprout_config::RootConfiguration;
use edera_sprout_config::actions::ActionDeclaration;
use edera_sprout_config::actions::chainload::ChainloadConfiguration;
use edera_sprout_config::entries::EntryDeclaration;
use edera_sprout_config::generators::GeneratorDeclaration;
use edera_sprout_config::generators::list::ListConfiguration;
use uefi::CString16;
use uefi::fs::{FileSystem, Path, PathBuf};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the Linux chainload action that will be used to boot Linux.
const LINUX_CHAINLOAD_ACTION_PREFIX: &str = "linux-chainload-";
/// The locations to scan for kernel pairs.
/// We will check for symlinks and if this directory is a symlink, we will skip it.
/// The empty string represents the root of the filesystem.
const SCAN_LOCATIONS: &[&str] = &["\\boot", "\\"];
/// Prefixes of kernel files to scan for.
const KERNEL_PREFIXES: &[&str] = &["vmlinuz"];
/// Prefixes of initramfs files to match to.
const INITRAMFS_PREFIXES: &[&str] = &["initramfs", "initrd", "initrd.img"];
/// This is really silly, but if what we are booting is the Canonical stubble stub,
/// there is a chance it will assert that the load options are non-empty.
/// Technically speaking, load options can be empty. However, it assumes load options
/// have something in it. Canonical's stubble copied code from systemd that does this
/// and then uses that code improperly by asserting that the pointer is non-null.
/// To give a good user experience, we place a placeholder value here to ensure it's non-empty.
/// For stubble, this code ensures the command line pointer becomes null:
/// https://github.com/ubuntu/stubble/blob/e56643979addfb98982266018e08921c07424a0c/stub.c#L61-L64
/// Then this code asserts on it, stopping the boot process:
/// https://github.com/ubuntu/stubble/blob/e56643979addfb98982266018e08921c07424a0c/stub.c#L27
const DEFAULT_LINUX_OPTIONS: &str = "placeholder";
/// Pair of kernel and initramfs.
/// This is what scanning a directory is meant to find.
struct KernelPair {
/// The path to a kernel.
kernel: String,
/// The path to an initramfs, if any.
initramfs: Option<String>,
}
/// Scan the specified `filesystem` at `path` for [KernelPair] results.
fn scan_directory(filesystem: &mut FileSystem, path: &str) -> Result<Vec<KernelPair>> {
// All the discovered kernel pairs.
let mut pairs = Vec::new();
// We have to special-case the root directory due to path logic in the uefi crate.
let is_root = path.is_empty() || path == "\\";
// Construct a filesystem path from the path string.
let path = CString16::try_from(path).context("unable to convert path to CString16")?;
let path = Path::new(&path);
let path = path.to_path_buf();
// Check if the path exists and is a directory.
let exists = filesystem
.metadata(&path)
.ok()
.map(|metadata| metadata.is_directory())
.unwrap_or(false);
// If the path does not exist, return an empty list.
if !exists {
return Ok(pairs);
}
// Open a directory iterator on the path to scan.
// Ignore errors here as in some scenarios this might fail due to symlinks.
let Some(directory) = filesystem.read_dir(&path).ok() else {
return Ok(pairs);
};
// Create a new path used for joining file names below.
// All attempts to derive paths for the files in the directory should use this instead.
// The uefi crate does not handle push correctly for the root directory.
// It will add a second slash, which will cause our path logic to fail.
let path_for_join = if is_root {
PathBuf::new()
} else {
path.clone()
};
// For each item in the directory, find a kernel.
for item in directory {
let item = item.context("unable to read directory item")?;
// Skip over any items that are not regular files.
if !item.is_regular_file() {
continue;
}
// Convert the name from a CString16 to a String.
let name = item.file_name().to_string();
// Convert the name to lowercase to make all of this case-insensitive.
let name_for_match = name.to_lowercase();
// Find a kernel prefix that matches, if any.
// This is case-insensitive to ensure we pick up all possibilities.
let Some(prefix) = KERNEL_PREFIXES.iter().find(|prefix| {
name_for_match == **prefix || name_for_match.starts_with(&format!("{}-", prefix))
}) else {
// Skip over anything that doesn't match a kernel prefix.
continue;
};
// Acquire the suffix of the name, this will be used to match an initramfs.
let suffix = &name[prefix.len()..];
// Find a matching initramfs, if any.
let mut initramfs_prefix_iter = INITRAMFS_PREFIXES.iter();
let matched_initramfs_path = loop {
let Some(prefix) = initramfs_prefix_iter.next() else {
break None;
};
// Construct an initramfs path.
let initramfs = format!("{}{}", prefix, suffix);
let initramfs = CString16::try_from(initramfs.as_str())
.context("unable to convert initramfs name to CString16")?;
let mut initramfs_path = path_for_join.clone();
initramfs_path.push(Path::new(&initramfs));
// Check if the initramfs path exists, if it does, break out of the loop.
if filesystem
.try_exists(&initramfs_path)
.context("unable to check if initramfs path exists")?
{
break Some(initramfs_path);
}
};
// Construct a kernel path from the kernel name.
let mut kernel = path_for_join.clone();
kernel.push(Path::new(&item.file_name()));
let kernel = kernel.to_string();
let initramfs = matched_initramfs_path.map(|initramfs_path| initramfs_path.to_string());
// Produce a kernel pair.
let pair = KernelPair { kernel, initramfs };
pairs.push(pair);
}
Ok(pairs)
}
/// Scan the specified `filesystem` for Linux kernels and matching initramfs.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
let mut pairs = Vec::new();
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Scan all locations for kernel pairs, adding them to the list.
for location in SCAN_LOCATIONS {
let scanned = scan_directory(filesystem, location)
.with_context(|| format!("unable to scan directory {}", location))?;
pairs.extend(scanned);
}
// If no kernel pairs were found, return false.
if pairs.is_empty() {
return Ok(false);
}
// Sort the kernel pairs by kernel version, if it has one, newer kernels first.
pairs.sort_by(|a, b| vercmp::compare_versions(&a.kernel, &b.kernel).reverse());
// Generate a unique name for the linux chainload action.
let chainload_action_name = format!("{}{}", LINUX_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// Kernel pairs are detected, generate a list configuration for it.
let generator = ListConfiguration {
entry: EntryDeclaration {
title: "Boot Linux $name".to_string(),
actions: vec![chainload_action_name.clone()],
..Default::default()
},
values: pairs
.into_iter()
.map(|pair| {
BTreeMap::from_iter(vec![
("name".to_string(), pair.kernel.clone()),
("kernel".to_string(), format!("{}{}", root, pair.kernel)),
(
"initrd".to_string(),
pair.initramfs
.map(|initramfs| format!("{}{}", root, initramfs))
.unwrap_or_default(),
),
])
})
.collect(),
};
// Generate a unique name for the Linux generator and insert the generator into the configuration.
config.generators.insert(
format!("auto-linux-{}", root_unique_hash),
GeneratorDeclaration {
list: Some(generator),
..Default::default()
},
);
// Insert a default value for the linux-options if it doesn't exist.
if !config.values.contains_key("linux-options") {
config.values.insert(
"linux-options".to_string(),
DEFAULT_LINUX_OPTIONS.to_string(),
);
}
// Generate a chainload configuration for the list generator.
// The list will provide these values to us.
// Note that we don't need an extra \\ in the paths here.
// The root already contains a trailing slash.
let chainload = ChainloadConfiguration {
path: "$kernel".to_string(),
options: vec!["$linux-options".to_string()],
linux_initrd: Some("$initrd".to_string()),
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We had a Linux kernel, so return true to indicate something was found.
Ok(true)
}

View File

@@ -0,0 +1,82 @@
use crate::utils;
use alloc::string::ToString;
use alloc::{format, vec};
use anyhow::{Context, Result};
use edera_sprout_config::RootConfiguration;
use edera_sprout_config::actions::ActionDeclaration;
use edera_sprout_config::actions::chainload::ChainloadConfiguration;
use edera_sprout_config::entries::EntryDeclaration;
use uefi::CString16;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the Windows chainload action that will be used to boot Windows.
const WINDOWS_CHAINLOAD_ACTION_PREFIX: &str = "windows-chainload-";
/// Windows boot manager path.
const BOOTMGR_FW_PATH: &str = "\\EFI\\Microsoft\\Boot\\bootmgfw.efi";
/// Scan the specified `filesystem` for Windows configurations.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
// Convert the boot manager firmware path to a path.
let bootmgr_fw_path =
CString16::try_from(BOOTMGR_FW_PATH).context("unable to convert path to CString16")?;
let bootmgr_fw_path = Path::new(&bootmgr_fw_path);
// Check if the boot manager firmware path exists, if it doesn't, return false.
if !filesystem
.try_exists(bootmgr_fw_path)
.context("unable to check if bootmgr firmware path exists")?
{
return Ok(false);
}
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Generate a unique name for the Windows chainload action.
let chainload_action_name = format!("{}{}", WINDOWS_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// Generate an entry name for Windows.
let entry_name = format!("auto-windows-{}", root_unique_hash,);
// Create an entry for Windows and insert it into the configuration.
let entry = EntryDeclaration {
title: "Boot Windows".to_string(),
actions: vec![chainload_action_name.clone()],
values: Default::default(),
};
config.entries.insert(entry_name, entry);
// Generate a chainload configuration for Windows.
let chainload = ChainloadConfiguration {
path: format!("{}{}", root, bootmgr_fw_path),
options: vec![],
..Default::default()
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We have a Windows boot entry, so return true to indicate something was found.
Ok(true)
}

View File

@@ -0,0 +1,2 @@
/// The configuration loader mechanisms.
pub mod loader;

View File

@@ -0,0 +1,68 @@
use crate::options::SproutOptions;
use alloc::vec::Vec;
use anyhow::{Context, Result, bail};
use core::ops::Deref;
use edera_sprout_config::{RootConfiguration, latest_version};
use eficore::platform::tpm::PlatformTpm;
use log::info;
use toml::Value;
use uefi::proto::device_path::LoadedImageDevicePath;
/// Loads the raw configuration from the sprout config file as data.
fn load_raw_config(options: &SproutOptions) -> Result<Vec<u8>> {
// Open the LoadedImageDevicePath protocol to get the path to the current image.
let current_image_device_path_protocol =
uefi::boot::open_protocol_exclusive::<LoadedImageDevicePath>(uefi::boot::image_handle())
.context("unable to get loaded image device path")?;
// Acquire the device path as a boxed device path.
let path = current_image_device_path_protocol.deref().to_boxed();
info!("configuration file: {}", options.config);
// Read the contents of the sprout config file.
let content = eficore::path::read_file_contents(Some(&path), &options.config)
.context("unable to read sprout config file")?;
// Measure the sprout.toml into the TPM, if needed and possible.
PlatformTpm::log_event(
PlatformTpm::PCR_BOOT_LOADER_CONFIG,
&content,
"sprout: configuration file",
)
.context("unable to measure the sprout.toml file into the TPM")?;
// Return the contents of the sprout config file.
Ok(content)
}
/// Loads the [RootConfiguration] for Sprout.
pub fn load(options: &SproutOptions) -> Result<RootConfiguration> {
// Load the raw configuration from the sprout config file.
let content = load_raw_config(options)?;
// Parse the raw configuration into a toml::Value which can represent any TOML file.
let value: Value = toml::from_slice(&content).context("unable to parse sprout config file")?;
// Check the version of the configuration without parsing the full configuration.
let version = value
.get("version")
.cloned()
.unwrap_or_else(|| Value::Integer(latest_version() as i64));
// Parse the version into an u32.
let version: u32 = version
.try_into()
.context("unable to get configuration version")?;
// Check if the version is supported.
if version != latest_version() {
bail!("unsupported configuration version: {}", version);
}
// If the version is supported, parse the full configuration.
let config: RootConfiguration = value
.try_into()
.context("unable to parse sprout.toml file")?;
// Return the parsed configuration.
Ok(config)
}

277
crates/boot/src/context.rs Normal file
View File

@@ -0,0 +1,277 @@
use crate::options::SproutOptions;
use alloc::boxed::Box;
use alloc::collections::{BTreeMap, BTreeSet};
use alloc::format;
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::anyhow;
use anyhow::{Result, bail};
use core::cmp::Reverse;
use edera_sprout_config::actions::ActionDeclaration;
use eficore::platform::timer::PlatformTimer;
use uefi::proto::device_path::DevicePath;
/// The maximum number of iterations that can be performed in [SproutContext::finalize].
const CONTEXT_FINALIZE_ITERATION_LIMIT: usize = 100;
/// Declares a root context for Sprout.
/// This contains data that needs to be shared across Sprout.
pub struct RootContext {
/// The actions that are available in Sprout.
actions: BTreeMap<String, ActionDeclaration>,
/// The device path of the loaded Sprout image.
loaded_image_path: Option<Box<DevicePath>>,
/// Platform timer started at the beginning of the boot process.
timer: PlatformTimer,
/// The global options of Sprout.
options: SproutOptions,
}
impl RootContext {
/// Creates a new root context with the `loaded_image_device_path` which will be stored
/// in the context for easy access. We also provide a `timer` which is used to measure elapsed
/// time for the bootloader.
pub fn new(
loaded_image_device_path: Box<DevicePath>,
timer: PlatformTimer,
options: SproutOptions,
) -> Self {
Self {
actions: BTreeMap::new(),
timer,
loaded_image_path: Some(loaded_image_device_path),
options,
}
}
/// Access the actions configured inside Sprout.
pub fn actions(&self) -> &BTreeMap<String, ActionDeclaration> {
&self.actions
}
/// Access the actions configured inside Sprout mutably for modification.
pub fn actions_mut(&mut self) -> &mut BTreeMap<String, ActionDeclaration> {
&mut self.actions
}
/// Access the platform timer that is started at the beginning of the boot process.
pub fn timer(&self) -> &PlatformTimer {
&self.timer
}
/// Access the device path of the loaded Sprout image.
pub fn loaded_image_path(&self) -> Result<&DevicePath> {
self.loaded_image_path
.as_deref()
.ok_or_else(|| anyhow!("no loaded image path"))
}
/// Access the global Sprout options.
pub fn options(&self) -> &SproutOptions {
&self.options
}
}
/// A context of Sprout. This is passed around different parts of Sprout and represents
/// a [RootContext] which is data that is shared globally, and [SproutContext] which works
/// sort of like a tree of values. You can cheaply clone a [SproutContext] and modify it with
/// new values, which override the values of contexts above it.
///
/// This is a core part of the value mechanism in Sprout which makes templating possible.
pub struct SproutContext {
root: Rc<RootContext>,
parent: Option<Rc<SproutContext>>,
values: BTreeMap<String, String>,
}
impl SproutContext {
/// Create a new [SproutContext] using `root` as the root context.
pub fn new(root: RootContext) -> Self {
Self {
root: Rc::new(root),
parent: None,
values: BTreeMap::new(),
}
}
/// Access the root context of this context.
pub fn root(&self) -> &RootContext {
self.root.as_ref()
}
/// Access the root context to modify it, if possible.
pub fn root_mut(&mut self) -> Option<&mut RootContext> {
Rc::get_mut(&mut self.root)
}
/// Retrieve the value specified by `key` from this context or its parents.
/// Returns `None` if the value is not found.
pub fn get(&self, key: impl AsRef<str>) -> Option<&String> {
self.values.get(key.as_ref()).or_else(|| {
self.parent
.as_ref()
.and_then(|parent| parent.get(key.as_ref()))
})
}
/// Collects all keys that are present in this context or its parents.
/// This is useful for iterating over all keys in a context.
pub fn all_keys(&self) -> Vec<String> {
let mut keys = BTreeSet::new();
for key in self.values.keys() {
keys.insert(key.clone());
}
if let Some(parent) = &self.parent {
keys.extend(parent.all_keys());
}
keys.into_iter().collect()
}
/// Collects all values that are present in this context or its parents.
/// This is useful for iterating over all values in a context.
pub fn all_values(&self) -> BTreeMap<String, String> {
let mut values = BTreeMap::new();
for key in self.all_keys() {
// Acquire the value from the context. Since retrieving all the keys will give us
// a full view of the context, we can be sure that the key exists.
let value = self.get(&key).cloned().unwrap_or_default();
values.insert(key.clone(), value);
}
values
}
/// Sets the value `key` to the value specified by `value` in this context.
/// If the parent context has this key, this will override that key.
pub fn set(&mut self, key: impl AsRef<str>, value: impl ToString) {
self.values
.insert(key.as_ref().to_string(), value.to_string());
}
/// Inserts all the specified `values` into this context.
/// These values will take precedence over its parent context.
pub fn insert(&mut self, values: &BTreeMap<String, String>) {
for (key, value) in values {
self.values.insert(key.clone(), value.clone());
}
}
/// Forks this context as an owned [SproutContext]. This makes it possible
/// to cheaply modify a context without cloning the parent context map.
/// The parent of the returned context is [self].
pub fn fork(self: &Rc<SproutContext>) -> Self {
Self {
root: self.root.clone(),
parent: Some(self.clone()),
values: BTreeMap::new(),
}
}
/// Freezes this context into a [Rc] which makes it possible to cheaply clone
/// and makes it less easy to modify a context. This can be used to pass the context
/// to various other parts of Sprout and ensure it won't be modified. Instead, once
/// a context is frozen, it should be [self.fork]'d to be modified.
pub fn freeze(self) -> Rc<SproutContext> {
Rc::new(self)
}
/// Finalizes a context by producing a context with no parent that contains all the values
/// of all parent contexts merged. This makes it possible to ensure [SproutContext] has no
/// inheritance with other [SproutContext]s. It will still contain a [RootContext] however.
pub fn finalize(&self) -> Result<SproutContext> {
// Collect all the values from the context and its parents.
let mut current_values = self.all_values();
// To ensure that there is no possible infinite loop, we need to check
// the number of iterations. If it exceeds CONTEXT_FINALIZE_ITERATION_LIMIT, we bail.
let mut iterations: usize = 0;
loop {
iterations += 1;
if iterations > CONTEXT_FINALIZE_ITERATION_LIMIT {
bail!("maximum number of replacement iterations reached while finalizing context");
}
let mut did_change = false;
let mut values = BTreeMap::new();
for (key, value) in &current_values {
let (changed, result) = Self::stamp_values(&current_values, value);
if changed {
// If the value changed, we need to re-stamp it.
did_change = true;
}
// Insert the new value into the value map.
values.insert(key.clone(), result);
}
current_values = values;
// If the values did not change, we can stop.
if !did_change {
break;
}
}
// Produce the final context.
Ok(Self {
root: self.root.clone(),
parent: None,
values: current_values,
})
}
/// Stamps the `text` value with the specified `values` map. The returned value indicates
/// whether the `text` has been changed and the value that was stamped and changed.
///
/// Stamping works like this:
/// - Start with the input text.
/// - Sort all the keys in reverse length order (longest keys first)
/// - For each key, if the key is not empty, replace $KEY in the text.
/// - Each follow-up iteration acts upon the last iterations result.
/// - We keep track if the text changes during the replacement.
/// - We return both whether the text changed during any iteration and the final result.
fn stamp_values(values: &BTreeMap<String, String>, text: impl AsRef<str>) -> (bool, String) {
let mut result = text.as_ref().to_string();
let mut did_change = false;
// Sort the keys by length. This is to ensure that we stamp the longest keys first.
// If we did not do this, "$abc" could be stamped by "$a" into an invalid result.
let mut keys = values.keys().collect::<Vec<_>>();
// Sort by key length, reversed. This results in the longest keys appearing first.
keys.sort_by_key(|key| Reverse(key.len()));
for key in keys {
// Empty keys are not supported.
if key.is_empty() {
continue;
}
// We can fetch the value from the map. It is verifiable that the key exists.
let Some(value) = values.get(key) else {
unreachable!("keys iterated over is collected on a map that cannot be modified");
};
let next_result = result.replace(&format!("${key}"), value);
if result != next_result {
did_change = true;
}
result = next_result;
}
(did_change, result)
}
/// Stamps the input `text` with all the values in this [SproutContext] and it's parents.
/// For example, if this context contains {"a":"b"}, and the text "hello\\$a", it will produce
/// "hello\\b" as an output string.
pub fn stamp(&self, text: impl AsRef<str>) -> String {
Self::stamp_values(&self.all_values(), text.as_ref()).1
}
/// Unloads a [SproutContext] back into an owned context. This
/// may not succeed if something else is holding onto the value.
pub fn unload(self: Rc<SproutContext>) -> Option<SproutContext> {
Rc::into_inner(self)
}
}

View File

@@ -0,0 +1,79 @@
use crate::context::SproutContext;
use alloc::collections::BTreeMap;
use alloc::format;
use alloc::rc::Rc;
use alloc::string::String;
use anyhow::{Context, Result};
use edera_sprout_config::drivers::DriverDeclaration;
use eficore::shim::{ShimInput, ShimSupport};
use log::info;
use uefi::boot::SearchType;
/// Loads the driver specified by the `driver` declaration.
fn load_driver(context: Rc<SproutContext>, driver: &DriverDeclaration) -> Result<()> {
// Acquire the handle and device path of the loaded image.
let sprout_image = uefi::boot::image_handle();
// Resolve the path to the driver image.
let resolved = eficore::path::resolve_path(
Some(context.root().loaded_image_path()?),
&context.stamp(&driver.path),
)
.context("unable to resolve path to driver")?;
// Load the driver image using the shim support integration.
// It will determine if the image needs to be loaded via the shim or can be loaded directly.
let image = ShimSupport::load(sprout_image, ShimInput::ResolvedPath(&resolved))?;
// Start the driver image, this is expected to return control to sprout.
// There is no guarantee that the driver will actually return control as it is
// just a standard EFI image.
uefi::boot::start_image(image).context("unable to start driver image")?;
Ok(())
}
/// Reconnects all handles to their controllers.
/// This is effectively a UEFI stack reload in a sense.
/// After we load all the drivers, we need to reconnect all of their handles
/// so that filesystems are recognized again.
fn reconnect() -> Result<()> {
// Locate all of the handles in the UEFI stack.
let handles = uefi::boot::locate_handle_buffer(SearchType::AllHandles)
.context("unable to locate handles buffer")?;
for handle in handles.iter() {
// Ignore the result as there is nothing we can do if reconnecting a controller fails.
// This is also likely to fail in some cases but should fail safely.
let _ = uefi::boot::connect_controller(*handle, None, None, true);
}
Ok(())
}
/// Load all the drivers specified in `drivers`.
/// There is no driver order currently. This will reconnect all the controllers
/// to all handles if at least one driver was loaded.
pub fn load(
context: Rc<SproutContext>,
drivers: &BTreeMap<String, DriverDeclaration>,
) -> Result<()> {
// If there are no drivers, we don't need to do anything.
if drivers.is_empty() {
return Ok(());
}
info!("loading drivers");
// Load all the drivers in no particular order.
for (name, driver) in drivers {
load_driver(context.clone(), driver).context(format!("unable to load driver: {}", name))?;
}
// Reconnect all the controllers to all handles.
reconnect().context("unable to reconnect drivers")?;
info!("loaded drivers");
// We've now loaded all the drivers, so we can return.
Ok(())
}

111
crates/boot/src/entries.rs Normal file
View File

@@ -0,0 +1,111 @@
use crate::context::SproutContext;
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use edera_sprout_config::entries::EntryDeclaration;
/// Represents an entry that is stamped and ready to be booted.
#[derive(Clone)]
pub struct BootableEntry {
name: String,
title: String,
context: Rc<SproutContext>,
declaration: EntryDeclaration,
default: bool,
pin_name: bool,
}
impl BootableEntry {
/// Create a new bootable entry to represent the full context of an entry.
pub fn new(
name: String,
title: String,
context: Rc<SproutContext>,
declaration: EntryDeclaration,
) -> Self {
Self {
name,
title,
context,
declaration,
default: false,
pin_name: false,
}
}
/// Fetch the name of the entry. This is usually a machine-identifiable key.
pub fn name(&self) -> &str {
&self.name
}
/// Fetch the title of the entry. This is usually a human-readable key.
pub fn title(&self) -> &str {
&self.title
}
/// Fetch the full context of the entry.
pub fn context(&self) -> Rc<SproutContext> {
Rc::clone(&self.context)
}
/// Fetch the declaration of the entry.
pub fn declaration(&self) -> &EntryDeclaration {
&self.declaration
}
/// Fetch whether the entry is the default entry.
pub fn is_default(&self) -> bool {
self.default
}
/// Fetch whether the entry is pinned, which prevents prefixing.
pub fn is_pin_name(&self) -> bool {
self.pin_name
}
/// Swap out the context of the entry.
pub fn swap_context(&mut self, context: Rc<SproutContext>) {
self.context = context;
}
/// Restamp the title with the current context.
pub fn restamp_title(&mut self) {
self.title = self.context.stamp(&self.title);
}
/// Mark this entry as the default entry.
pub fn mark_default(&mut self) {
self.default = true;
}
// Unmark this entry as the default entry.
pub fn unmark_default(&mut self) {
self.default = false;
}
/// Mark this entry as being pinned, which prevents prefixing.
pub fn mark_pin_name(&mut self) {
self.pin_name = true;
}
/// Prepend the name of the entry with `prefix`.
pub fn prepend_name_prefix(&mut self, prefix: &str) {
self.name.insert_str(0, prefix);
}
/// Determine if this entry matches `needle` by comparing to the name or title of the entry.
pub fn is_match(&self, needle: &str) -> bool {
self.name == needle || self.title == needle
}
/// Find an entry by `needle` inside the entry iterator `haystack`.
/// This will search for an entry by name, title, or index.
pub fn find<'a>(
needle: &str,
haystack: impl Iterator<Item = &'a BootableEntry>,
) -> Option<&'a BootableEntry> {
haystack
.enumerate()
.find(|(index, entry)| entry.is_match(needle) || index.to_string() == needle)
.map(|(_index, entry)| entry)
}
}

View File

@@ -0,0 +1,19 @@
use crate::context::SproutContext;
use alloc::rc::Rc;
use alloc::string::String;
use anyhow::{Result, bail};
use edera_sprout_config::extractors::ExtractorDeclaration;
/// The filesystem device match extractor.
pub mod filesystem_device_match;
/// Extracts the value using the specified `extractor` under the provided `context`.
/// The extractor must return a value, and if a value cannot be determined, an error
/// should be returned.
pub fn extract(context: Rc<SproutContext>, extractor: &ExtractorDeclaration) -> Result<String> {
if let Some(filesystem) = &extractor.filesystem_device_match {
filesystem_device_match::extract(context, filesystem)
} else {
bail!("unknown extractor configuration");
}
}

View File

@@ -0,0 +1,147 @@
use crate::context::SproutContext;
use alloc::rc::Rc;
use alloc::string::String;
use anyhow::{Context, Result, anyhow, bail};
use core::ops::Deref;
use core::str::FromStr;
use edera_sprout_config::extractors::filesystem_device_match::FilesystemDeviceMatchExtractor;
use eficore::partition::PartitionGuidForm;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::media::file::{File, FileSystemVolumeLabel};
use uefi::proto::media::fs::SimpleFileSystem;
use uefi::{CString16, Guid};
/// Extract a filesystem device path using the specified `context` and `extractor` configuration.
pub fn extract(
context: Rc<SproutContext>,
extractor: &FilesystemDeviceMatchExtractor,
) -> Result<String> {
// If no criteria are provided, bail with an error.
if extractor.has_label.is_none()
&& extractor.has_item.is_none()
&& extractor.has_partition_uuid.is_none()
&& extractor.has_partition_type_uuid.is_none()
{
bail!("at least one criteria is required for filesystem-device-match");
}
// Find all the filesystems inside the UEFI stack.
let handles = uefi::boot::find_handles::<SimpleFileSystem>()
.context("unable to find filesystem handles")?;
// Iterate over all the filesystems and check if they match the criteria.
for handle in handles {
// This defines whether a match has been found.
let mut has_match = false;
// Check if the partition info matches partition uuid criteria.
if let Some(ref has_partition_uuid) = extractor.has_partition_uuid {
// Parse the partition uuid from the extractor.
let parsed_uuid = Guid::from_str(has_partition_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-uuid: {}", e))?;
// Fetch the root of the device.
let root = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to fetch the device path of the filesystem")?
.deref()
.to_boxed();
// Fetch the partition uuid for this filesystem.
let partition_uuid =
eficore::partition::partition_guid(&root, PartitionGuidForm::Partition)
.context("unable to fetch the partition uuid of the filesystem")?;
// Compare the partition uuid to the parsed uuid.
// If it does not match, continue to the next filesystem.
if partition_uuid != Some(parsed_uuid) {
continue;
}
has_match = true;
}
// Check if the partition info matches partition type uuid criteria.
if let Some(ref has_partition_type_uuid) = extractor.has_partition_type_uuid {
// Parse the partition type uuid from the extractor.
let parsed_uuid = Guid::from_str(has_partition_type_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-type-uuid: {}", e))?;
// Fetch the root of the device.
let root = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to fetch the device path of the filesystem")?
.deref()
.to_boxed();
// Fetch the partition type uuid for this filesystem.
let partition_type_uuid =
eficore::partition::partition_guid(&root, PartitionGuidForm::PartitionType)
.context("unable to fetch the partition uuid of the filesystem")?;
// Compare the partition type uuid to the parsed uuid.
// If it does not match, continue to the next filesystem.
if partition_type_uuid != Some(parsed_uuid) {
continue;
}
has_match = true;
}
// Open the filesystem protocol for this handle.
let mut filesystem = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(handle)
.context("unable to open filesystem protocol")?;
// Check if the filesystem matches label criteria.
if let Some(ref label) = extractor.has_label {
let want_label = CString16::try_from(context.stamp(label).as_str())
.context("unable to convert label to CString16")?;
let mut root = filesystem
.open_volume()
.context("unable to open filesystem volume")?;
let label = root
.get_boxed_info::<FileSystemVolumeLabel>()
.context("unable to get filesystem volume label")?;
if label.volume_label() != want_label {
continue;
}
has_match = true;
}
// Check if the filesystem matches item criteria.
if let Some(ref item) = extractor.has_item {
let want_item = CString16::try_from(context.stamp(item).as_str())
.context("unable to convert item to CString16")?;
let mut filesystem = FileSystem::new(filesystem);
// Check the metadata of the item.
// Ignore filesystem errors as we can't do anything useful with the error.
let Some(metadata) = filesystem.metadata(Path::new(&want_item)).ok() else {
continue;
};
// Only check directories and files.
if !(metadata.is_directory() || metadata.is_regular_file()) {
continue;
}
has_match = true;
}
// If there is no match, continue to the next filesystem.
if !has_match {
continue;
}
// If we have a match, return the device root path.
let path = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to open filesystem device path")?;
let path = path.deref();
// Acquire the device path root as a string.
return eficore::path::device_path_root(path).context("unable to get device path root");
}
// If there is a fallback value, use it at this point.
if let Some(fallback) = &extractor.fallback {
return Ok(fallback.clone());
}
// Without a fallback, we can't continue, so bail.
bail!("unable to find matching filesystem")
}

View File

@@ -0,0 +1,34 @@
use crate::context::SproutContext;
use crate::entries::BootableEntry;
use alloc::rc::Rc;
use alloc::vec::Vec;
use anyhow::Result;
use anyhow::bail;
use edera_sprout_config::generators::GeneratorDeclaration;
/// The BLS generator.
pub mod bls;
/// The list generator.
pub mod list;
/// The matrix generator.
pub mod matrix;
/// Runs the generator specified by the `generator` option.
/// It uses the specified `context` as the parent context for
/// the generated entries, injecting more values if needed.
pub fn generate(
context: Rc<SproutContext>,
generator: &GeneratorDeclaration,
) -> Result<Vec<BootableEntry>> {
if let Some(matrix) = &generator.matrix {
matrix::generate(context, matrix)
} else if let Some(bls) = &generator.bls {
bls::generate(context, bls)
} else if let Some(list) = &generator.list {
list::generate(context, list)
} else {
bail!("unknown generator configuration");
}
}

View File

@@ -0,0 +1,211 @@
use crate::context::SproutContext;
use crate::entries::BootableEntry;
use crate::generators::bls::entry::BlsEntry;
use crate::utils::vercmp;
use alloc::format;
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::{Context, Result};
use core::cmp::Ordering;
use core::str::FromStr;
use edera_sprout_config::generators::bls::BlsConfiguration;
use uefi::cstr16;
use uefi::fs::{FileSystem, PathBuf};
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
use uefi::proto::media::fs::SimpleFileSystem;
/// BLS entry parser.
mod entry;
// TODO(azenla): remove this once variable substitution is implemented.
/// This function is used to remove the `tuned_initrd` variable from entry values.
/// Fedora uses tuned which adds an initrd that shouldn't be used.
fn quirk_initrd_remove_tuned(input: String) -> String {
input.replace("$tuned_initrd", "").trim().to_string()
}
/// Sorts two entries according to the BLS sort system.
/// Reference: https://uapi-group.org/specifications/specs/boot_loader_specification/#sorting
fn sort_entries(a: &(BlsEntry, BootableEntry), b: &(BlsEntry, BootableEntry)) -> Ordering {
// Grab the components of both entries.
let (a_bls, a_boot) = a;
let (b_bls, b_boot) = b;
// Grab the sort keys from both entries.
let a_sort_key = a_bls.sort_key();
let b_sort_key = b_bls.sort_key();
// Compare the sort keys of both entries.
match a_sort_key.cmp(&b_sort_key) {
// If A and B sort keys are equal, sort by machine-id.
Ordering::Equal => {
// Grab the machine-id from both entries.
let a_machine_id = a_bls.machine_id();
let b_machine_id = b_bls.machine_id();
// Compare the machine-id of both entries.
match a_machine_id.cmp(&b_machine_id) {
// If both machine-id values are equal, sort by version.
Ordering::Equal => {
// Grab the version from both entries.
let a_version = a_bls.version();
let b_version = b_bls.version();
// Compare the version of both entries, sorting newer versions first.
match vercmp::compare_versions_optional(
a_version.as_deref(),
b_version.as_deref(),
)
.reverse()
{
// If both versions are equal, sort by file name in reverse order.
Ordering::Equal => {
// Grab the file name from both entries.
let a_name = a_boot.name();
let b_name = b_boot.name();
// Compare the file names of both entries, sorting newer entries first.
vercmp::compare_versions(a_name, b_name).reverse()
}
other => other,
}
}
other => other,
}
}
other => other,
}
}
/// Generates entries from the BLS entries directory using the specified `bls` configuration and
/// `context`. The BLS conversion is best-effort and will ignore any unsupported entries.
pub fn generate(context: Rc<SproutContext>, bls: &BlsConfiguration) -> Result<Vec<BootableEntry>> {
let mut entries = Vec::new();
// Stamp the path to the BLS directory.
let path = context.stamp(&bls.path);
// Resolve the path to the BLS directory.
let bls_resolved =
eficore::path::resolve_path(Some(context.root().loaded_image_path()?), &path)
.context("unable to resolve bls path")?;
// Construct a filesystem path to the BLS entries directory.
let mut entries_path = PathBuf::from(
bls_resolved
.sub_path
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert bls path to string")?,
);
entries_path.push(cstr16!("entries"));
// Open exclusive access to the BLS filesystem.
let fs =
uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(bls_resolved.filesystem_handle)
.context("unable to open bls filesystem")?;
let mut fs = FileSystem::new(fs);
// Read the BLS entries directory.
let entries_iter = fs
.read_dir(&entries_path)
.context("unable to read bls entries")?;
// For each entry in the BLS entries directory, parse the entry and add it to the list.
for entry in entries_iter {
// Unwrap the entry file info.
let entry = entry.context("unable to read bls item entry")?;
// Skip items that are not regular files.
if !entry.is_regular_file() {
continue;
}
// Get the file name of the filesystem item.
let mut name = entry.file_name().to_string();
// Ignore files that are not .conf files.
if !name.to_lowercase().ends_with(".conf") {
continue;
}
// Remove the .conf extension.
name.truncate(name.len() - 5);
// Skip over files that are named just ".conf" as they are not valid entry files.
if name.is_empty() {
continue;
}
// Create a mutable path so we can append the file name to produce the full path.
let mut full_entry_path = entries_path.to_path_buf();
full_entry_path.push(entry.file_name());
// Read the entry file.
let content = fs
.read(full_entry_path)
.context("unable to read bls file")?;
// Parse the entry file as a UTF-8 string.
let content = String::from_utf8(content).context("unable to read bls entry as utf8")?;
// Parse the entry file as a BLS entry.
let entry = BlsEntry::from_str(&content).context("unable to parse bls entry")?;
// Ignore entries that are not valid for Sprout.
if !entry.is_valid() {
continue;
}
// Produce a new sprout context for the entry with the extracted values.
let mut context = context.fork();
let title_base = entry.title().unwrap_or_else(|| name.clone());
let chainload = entry.chainload_path().unwrap_or_default();
let options = entry.options().unwrap_or_default();
let version = entry.version().unwrap_or_default();
let machine_id = entry.machine_id().unwrap_or_default();
// Put the initrd through a quirk modifier to support Fedora.
let initrd = quirk_initrd_remove_tuned(entry.initrd_path().unwrap_or_default());
// Combine the title with the version if a version is present, except if it already contains it.
// Sometimes BLS will have a version in the title already, and this makes it unique.
let title_full = if !version.is_empty() && !title_base.contains(&version) {
format!("{} {}", title_base, version)
} else {
title_base.clone()
};
context.set("title-base", title_base);
context.set("title", title_full);
context.set("chainload", chainload);
context.set("options", options);
context.set("initrd", initrd);
context.set("version", version);
context.set("machine-id", machine_id);
// Produce a new bootable entry.
let mut boot = BootableEntry::new(
name,
bls.entry.title.clone(),
context.freeze(),
bls.entry.clone(),
);
// Pin the entry name to prevent prefixing.
// This is needed as the bootloader interface requires the name to be
// the same as the entry file name, minus the .conf extension.
boot.mark_pin_name();
// Add the BLS entry to the list, along with the bootable entry.
entries.push((entry, boot));
}
// Sort all the entries according to the BLS sort system.
entries.sort_by(sort_entries);
// Collect all the bootable entries and return them.
Ok(entries.into_iter().map(|(_, boot)| boot).collect())
}

View File

@@ -0,0 +1,168 @@
use alloc::string::{String, ToString};
use anyhow::{Error, Result};
use core::str::FromStr;
/// Represents a parsed BLS entry.
/// Fields unrelated to Sprout are not included.
#[derive(Default, Debug, Clone)]
pub struct BlsEntry {
/// The title of the entry.
pub title: Option<String>,
/// The options to pass to the entry.
pub options: Option<String>,
/// The path to the linux kernel.
pub linux: Option<String>,
/// The path to the initrd.
pub initrd: Option<String>,
/// The path to an EFI image.
pub efi: Option<String>,
/// The sort key for the entry.
pub sort_key: Option<String>,
/// The version of the entry.
pub version: Option<String>,
/// The machine id of the entry.
pub machine_id: Option<String>,
}
/// Parser for a BLS entry.
impl FromStr for BlsEntry {
type Err = Error;
/// Parses the `input` as a BLS entry file.
fn from_str(input: &str) -> Result<Self> {
// All the fields in a BLS entry we understand.
// Set all to None initially.
let mut title: Option<String> = None;
let mut options: Option<String> = None;
let mut linux: Option<String> = None;
let mut initrd: Option<String> = None;
let mut efi: Option<String> = None;
let mut sort_key: Option<String> = None;
let mut version: Option<String> = None;
let mut machine_id: Option<String> = None;
// Iterate over each line in the input and parse it.
for line in input.lines() {
// Trim the line.
let line = line.trim();
// Skip over empty lines and comments.
if line.is_empty() || line.starts_with('#') {
continue;
}
// Split the line once by whitespace. This technically includes newlines but since
// the lines iterator is used, there should never be a newline here.
let Some((key, value)) = line.split_once(char::is_whitespace) else {
continue;
};
// Match the key to a field we understand.
match key {
// The title of the entry.
"title" => {
title = Some(value.trim().to_string());
}
// The options to pass to the entry.
"options" => {
options = Some(value.trim().to_string());
}
// The path to the linux kernel.
"linux" => {
linux = Some(value.trim().to_string());
}
// The path to the initrd.
"initrd" => {
initrd = Some(value.trim().to_string());
}
// The path to an EFI image.
"efi" => {
efi = Some(value.trim().to_string());
}
"sort-key" => {
sort_key = Some(value.trim().to_string());
}
"version" => {
version = Some(value.trim().to_string());
}
"machine-id" => {
machine_id = Some(value.trim().to_string());
}
// Ignore any other key.
_ => {
continue;
}
}
}
// Produce a BLS entry from the parsed fields.
Ok(Self {
title,
options,
linux,
initrd,
efi,
sort_key,
version,
machine_id,
})
}
}
impl BlsEntry {
/// Checks if this BLS entry is something we can actually boot in Sprout.
pub fn is_valid(&self) -> bool {
self.linux.is_some() || self.efi.is_some()
}
/// Fetches the path to an EFI bootable image to boot, if any.
/// This prioritizes the linux field over efi.
/// It also converts / to \\ to match EFI path style.
pub fn chainload_path(&self) -> Option<String> {
self.linux
.clone()
.or(self.efi.clone())
.map(|path| path.replace('/', "\\").trim_start_matches('\\').to_string())
}
/// Fetches the path to an initrd to pass to the kernel, if any.
/// It also converts / to \\ to match EFI path style.
pub fn initrd_path(&self) -> Option<String> {
self.initrd
.clone()
.map(|path| path.replace('/', "\\").trim_start_matches('\\').to_string())
}
/// Fetches the options to pass to the kernel, if any.
pub fn options(&self) -> Option<String> {
self.options.clone()
}
/// Fetches the title of the entry, if any.
pub fn title(&self) -> Option<String> {
self.title.clone()
}
/// Fetches the sort key of the entry, if any.
pub fn sort_key(&self) -> Option<String> {
self.sort_key.clone()
}
/// Fetches the version of the entry, if any.
pub fn version(&self) -> Option<String> {
self.version.clone()
}
/// Fetches the machine id of the entry, if any.
pub fn machine_id(&self) -> Option<String> {
self.machine_id.clone()
}
}

View File

@@ -0,0 +1,40 @@
use crate::context::SproutContext;
use crate::entries::BootableEntry;
use alloc::rc::Rc;
use alloc::string::ToString;
use alloc::vec::Vec;
use anyhow::Result;
use edera_sprout_config::generators::list::ListConfiguration;
/// Generates a set of entries using the specified `list` configuration in the `context`.
pub fn generate(
context: Rc<SproutContext>,
list: &ListConfiguration,
) -> Result<Vec<BootableEntry>> {
let mut entries = Vec::new();
// For each combination, create a new context and entry.
for (index, combination) in list.values.iter().enumerate() {
let mut context = context.fork();
// Insert the combination into the context.
context.insert(combination);
let context = context.freeze();
// Stamp the entry title and actions from the template.
let mut entry = list.entry.clone();
entry.actions = entry
.actions
.into_iter()
.map(|action| context.stamp(action))
.collect();
// Push the entry into the list with the new context.
entries.push(BootableEntry::new(
index.to_string(),
entry.title.clone(),
context,
entry,
));
}
Ok(entries)
}

View File

@@ -0,0 +1,60 @@
use crate::context::SproutContext;
use crate::entries::BootableEntry;
use crate::generators::list;
use alloc::collections::BTreeMap;
use alloc::rc::Rc;
use alloc::string::String;
use alloc::vec;
use alloc::vec::Vec;
use anyhow::Result;
use edera_sprout_config::generators::list::ListConfiguration;
use edera_sprout_config::generators::matrix::MatrixConfiguration;
/// Builds out multiple generations of `input` based on a matrix style.
/// For example, if input is: {"x": ["a", "b"], "y": ["c", "d"]}
/// It will produce:
/// x: a, y: c
/// x: a, y: d
/// x: b, y: c
/// x: b, y: d
fn build_matrix(input: &BTreeMap<String, Vec<String>>) -> Vec<BTreeMap<String, String>> {
// Convert the input into a vector of tuples.
let items: Vec<(String, Vec<String>)> = input.clone().into_iter().collect();
// The result is a vector of maps.
let mut result: Vec<BTreeMap<String, String>> = vec![BTreeMap::new()];
for (key, values) in items {
let mut new_result = Vec::new();
// Produce all the combinations of the input values.
for combination in &result {
for value in &values {
let mut new_combination = combination.clone();
new_combination.insert(key.clone(), value.clone());
new_result.push(new_combination);
}
}
result = new_result;
}
result.into_iter().filter(|item| !item.is_empty()).collect()
}
/// Generates a set of entries using the specified `matrix` configuration in the `context`.
pub fn generate(
context: Rc<SproutContext>,
matrix: &MatrixConfiguration,
) -> Result<Vec<BootableEntry>> {
// Produce all the combinations of the input values.
let combinations = build_matrix(&matrix.values);
// Use the list generator to generate entries for each combination.
list::generate(
context,
&ListConfiguration {
entry: matrix.entry.clone(),
values: combinations,
},
)
}

400
crates/boot/src/main.rs Normal file
View File

@@ -0,0 +1,400 @@
#![doc = include_str!("../README.md")]
#![no_std]
#![no_main]
extern crate alloc;
use crate::context::{RootContext, SproutContext};
use crate::entries::BootableEntry;
use crate::options::SproutOptions;
use crate::options::parser::OptionsRepresentable;
use crate::phases::phase;
use alloc::collections::BTreeMap;
use alloc::format;
use alloc::string::ToString;
use alloc::vec::Vec;
use anyhow::{Context, Result, bail};
use core::ops::Deref;
use core::time::Duration;
use edera_sprout_config::RootConfiguration;
use eficore::bootloader_interface::{BootloaderInterface, BootloaderInterfaceTimeout};
use eficore::partition::PartitionGuidForm;
use eficore::platform::timer::PlatformTimer;
use eficore::platform::tpm::PlatformTpm;
use eficore::secure::SecureBoot;
use eficore::setup;
use log::{error, info, warn};
use uefi::entry;
use uefi::proto::device_path::LoadedImageDevicePath;
use uefi_raw::Status;
/// actions: Code that can be configured and executed by Sprout.
pub mod actions;
/// autoconfigure: Autoconfigure Sprout based on the detected environment.
pub mod autoconfigure;
/// config: Sprout configuration mechanism.
pub mod config;
/// context: Stored values that can be cheaply forked and cloned.
pub mod context;
/// drivers: EFI drivers to load and provide extra functionality.
pub mod drivers;
/// entries: Boot menu entries that have a title and can execute actions.
pub mod entries;
/// extractors: Runtime code that can extract values into the Sprout context.
pub mod extractors;
/// generators: Runtime code that can generate entries with specific values.
pub mod generators;
/// menu: Display a boot menu to select an entry to boot.
pub mod menu;
/// options: Parse the options of the Sprout executable.
pub mod options;
/// phases: Hooks into specific parts of the boot process.
pub mod phases;
/// sbat: Secure Boot Attestation section.
pub mod sbat;
/// utils: Utility functions that are used by other parts of Sprout.
pub mod utils;
/// The delay to wait for when an error occurs in Sprout.
const DELAY_ON_ERROR: Duration = Duration::from_secs(10);
/// Run Sprout, returning an error if one occurs.
fn run() -> Result<()> {
// For safety reasons, we will note that Secure Boot is in beta on Sprout.
if SecureBoot::enabled().context("unable to determine Secure Boot status")? {
warn!("Sprout Secure Boot is in beta. Some functionality may not work as expected.");
}
// Start the platform timer.
let timer = PlatformTimer::start();
// Mark the initialization of Sprout in the bootloader interface.
BootloaderInterface::mark_init(&timer)
.context("unable to mark initialization in bootloader interface")?;
// Tell the bootloader interface what firmware we are running on.
BootloaderInterface::set_firmware_info()
.context("unable to set firmware info in bootloader interface")?;
// Tell the bootloader interface what loader is being used.
BootloaderInterface::set_loader_info()
.context("unable to set loader info in bootloader interface")?;
// Acquire the number of active PCR banks on the TPM.
// If no TPM is available, this will return zero.
let active_pcr_banks = PlatformTpm::active_pcr_banks()?;
// Tell the bootloader interface what the number of active PCR banks is.
BootloaderInterface::set_tpm2_active_pcr_banks(active_pcr_banks)
.context("unable to set tpm2 active PCR banks in bootloader interface")?;
// Parse the options to the sprout executable.
let options = SproutOptions::parse().context("unable to parse options")?;
// If --autoconfigure is specified, we use a stub configuration.
let mut config = if options.autoconfigure {
info!("autoconfiguration enabled, configuration file will be ignored");
RootConfiguration::default()
} else {
// Load the configuration of sprout.
// At this point, the configuration has been validated and the specified
// version is checked to ensure compatibility.
config::loader::load(&options)?
};
// Grab the sprout.efi loaded image path.
// This is done in a block to ensure the release of the LoadedImageDevicePath protocol.
let loaded_image_path = {
let current_image_device_path_protocol = uefi::boot::open_protocol_exclusive::<
LoadedImageDevicePath,
>(uefi::boot::image_handle())
.context("unable to get loaded image device path")?;
current_image_device_path_protocol.deref().to_boxed()
};
// Grab the partition GUID of the ESP that sprout was loaded from.
let loaded_image_partition_guid =
eficore::partition::partition_guid(&loaded_image_path, PartitionGuidForm::Partition)
.context("unable to retrieve loaded image partition guid")?;
// Set the partition GUID of the ESP that sprout was loaded from in the bootloader interface.
if let Some(loaded_image_partition_guid) = loaded_image_partition_guid {
// Tell the system about the partition GUID.
BootloaderInterface::set_partition_guid(&loaded_image_partition_guid)
.context("unable to set partition guid in bootloader interface")?;
}
// Tell the bootloader interface what the loaded image path is.
BootloaderInterface::set_loader_path(&loaded_image_path)
.context("unable to set loader path in bootloader interface")?;
// Create the root context.
let mut root = RootContext::new(loaded_image_path, timer, options);
// Insert the configuration actions into the root context.
root.actions_mut().extend(config.actions.clone());
// Create a new sprout context with the root context.
let mut context = SproutContext::new(root);
// Insert the configuration values into the sprout context.
context.insert(&config.values);
// Freeze the sprout context so it can be shared and cheaply cloned.
let context = context.freeze();
// Execute the early phase.
phase(context.clone(), &config.phases.early).context("unable to execute early phase")?;
// Load all configured drivers.
drivers::load(context.clone(), &config.drivers).context("unable to load drivers")?;
// If --autoconfigure is specified or the loaded configuration has autoconfigure enabled,
// trigger the autoconfiguration mechanism.
if context.root().options().autoconfigure || config.options.autoconfigure {
autoconfigure::autoconfigure(&mut config).context("unable to autoconfigure")?;
}
// Unload the context so that it can be modified.
let Some(mut context) = context.unload() else {
bail!("context safety violation while trying to unload context");
};
// Perform root context modification in a block to release the modification when complete.
{
// Modify the root context to include the autoconfigured actions.
let Some(root) = context.root_mut() else {
bail!("context safety violation while trying to modify root context");
};
// Extend the root context with the autoconfigured actions.
root.actions_mut().extend(config.actions);
// Insert any modified root values.
context.insert(&config.values);
}
// Refreeze the context to ensure that further operations can share the context.
let context = context.freeze();
// Run all the extractors declared in the configuration.
let mut extracted = BTreeMap::new();
for (name, extractor) in &config.extractors {
let value = extractors::extract(context.clone(), extractor)
.context(format!("unable to extract value {}", name))?;
info!("extracted value {}: {}", name, value);
extracted.insert(name.clone(), value);
}
let mut context = context.fork();
// Insert the extracted values into the sprout context.
context.insert(&extracted);
let context = context.freeze();
// Execute the startup phase.
phase(context.clone(), &config.phases.startup).context("unable to execute startup phase")?;
let mut entries = Vec::new();
// Insert all the static entries from the configuration into the entry list.
for (name, entry) in config.entries {
// Associate the main context with the static entry.
entries.push(BootableEntry::new(
name,
entry.title.clone(),
context.clone(),
entry,
));
}
// Run all the generators declared in the configuration.
for (name, generator) in config.generators {
let context = context.fork().freeze();
// We will prefix all entries with [name]-, provided the name is not pinned.
let prefix = format!("{}-", name);
// Add all the entries generated by the generator to the entry list.
// The generator specifies the context associated with the entry.
for mut entry in generators::generate(context.clone(), &generator)? {
// If the entry name is not pinned, prepend the name prefix.
if !entry.is_pin_name() {
entry.prepend_name_prefix(&prefix);
}
entries.push(entry);
}
}
for entry in &mut entries {
let mut context = entry.context().fork();
// Insert the values from the entry configuration into the
// sprout context to use with the entry itself.
context.insert(&entry.declaration().values);
let context = context
.finalize()
.context("unable to finalize context")?
.freeze();
// Provide the new context to the bootable entry.
entry.swap_context(context);
// Restamp the title with any values.
entry.restamp_title();
// Mark this entry as the default entry if it is declared as such.
if let Some(ref default_entry) = config.options.default_entry {
// If the entry matches the default entry, mark it as the default entry.
if entry.is_match(default_entry) {
entry.mark_default();
}
}
}
// Tell the bootloader interface what entries are available.
BootloaderInterface::set_entries(entries.iter().map(|entry| entry.name()))
.context("unable to set entries in bootloader interface")?;
// Execute the late phase.
phase(context.clone(), &config.phases.late).context("unable to execute late phase")?;
// Acquire the timeout setting from the bootloader interface.
let bootloader_interface_timeout =
BootloaderInterface::get_timeout().context("unable to get bootloader interface timeout")?;
// Acquire the default entry from the bootloader interface.
let bootloader_interface_default_entry = BootloaderInterface::get_default_entry()
.context("unable to get bootloader interface default entry")?;
// Acquire the oneshot entry from the bootloader interface.
let bootloader_interface_oneshot_entry = BootloaderInterface::get_oneshot_entry()
.context("unable to get bootloader interface oneshot entry")?;
// If --boot is specified, boot that entry immediately.
let mut force_boot_entry = context.root().options().boot.clone();
// If --force-menu is specified, show the boot menu regardless of the value of --boot.
let mut force_boot_menu = context.root().options().force_menu;
// Determine the menu timeout in seconds based on the options or configuration.
// We prefer the options over the configuration to allow for overriding.
let mut menu_timeout = context
.root()
.options()
.menu_timeout
.unwrap_or(config.options.menu_timeout);
// Apply bootloader interface timeout settings.
match bootloader_interface_timeout {
BootloaderInterfaceTimeout::MenuForce => {
// Force the boot menu.
force_boot_menu = true;
}
BootloaderInterfaceTimeout::MenuHidden | BootloaderInterfaceTimeout::MenuDisabled => {
// Hide the boot menu by setting the timeout to zero.
menu_timeout = 0;
}
BootloaderInterfaceTimeout::Timeout(timeout) => {
// Configure the timeout to the specified value.
menu_timeout = timeout;
}
BootloaderInterfaceTimeout::Unspecified => {
// Do nothing.
}
}
// Apply bootloader interface default entry settings.
if let Some(ref bootloader_interface_default_entry) = bootloader_interface_default_entry {
// Iterate over all the entries and mark the default entry as the one specified.
for entry in &mut entries {
// Mark the entry as the default entry if it matches the specified entry.
// If the entry does not match the specified entry, unmark it as the default entry.
if entry.is_match(bootloader_interface_default_entry) {
entry.mark_default();
} else {
entry.unmark_default();
}
}
}
// Apply bootloader interface oneshot entry settings.
// If set, we will force booting the oneshot entry.
if let Some(ref bootloader_interface_oneshot_entry) = bootloader_interface_oneshot_entry {
force_boot_entry = Some(bootloader_interface_oneshot_entry.clone());
}
// If no entries were the default, pick the first entry as the default entry.
if entries.iter().all(|entry| !entry.is_default())
&& let Some(entry) = entries.first_mut()
{
entry.mark_default();
}
// Convert the menu timeout to a duration.
let menu_timeout = Duration::from_secs(menu_timeout);
// Use the forced boot entry if possible, otherwise pick the first entry using a boot menu.
let entry = if !force_boot_menu && let Some(ref force_boot_entry) = force_boot_entry {
BootableEntry::find(force_boot_entry, entries.iter())
.context(format!("unable to find entry: {force_boot_entry}"))?
} else {
// Delegate to the menu to select an entry to boot.
menu::select(&timer, menu_timeout, &entries)
.context("unable to select entry via boot menu")?
};
// Tell the bootloader interface what the selected entry is.
BootloaderInterface::set_selected_entry(entry.name().to_string())
.context("unable to set selected entry in bootloader interface")?;
// Execute all the actions for the selected entry.
for action in &entry.declaration().actions {
let action = entry.context().stamp(action);
actions::execute(entry.context().clone(), &action)
.context(format!("unable to execute action '{}'", action))?;
}
Ok(())
}
/// The main entrypoint of sprout.
/// It is possible this function will not return if actions that are executed
/// exit boot services or do not return control to sprout.
#[entry]
fn efi_main() -> Status {
// Initialize the basic UEFI environment.
// If initialization fails, we will return ABORTED.
// NOTE: This function will also initialize the logger.
// The logger will panic if it is unable to initialize.
// It is guaranteed that if this returns, the logger is initialized.
if let Err(error) = setup::init() {
error!("unable to initialize environment: {}", error);
return Status::ABORTED;
}
// Run Sprout, then handle the error.
let result = run();
if let Err(ref error) = result {
// Print an error trace.
error!("sprout encountered an error:");
for (index, stack) in error.chain().enumerate() {
error!("[{}]: {}", index, stack);
}
// Sleep to allow the user to read the error.
uefi::boot::stall(DELAY_ON_ERROR);
return Status::ABORTED;
}
// Sprout doesn't necessarily guarantee anything was booted.
// If we reach here, we will exit back to whoever called us.
Status::SUCCESS
}

199
crates/boot/src/menu.rs Normal file
View File

@@ -0,0 +1,199 @@
use crate::entries::BootableEntry;
use alloc::vec;
use anyhow::{Context, Result, bail};
use core::time::Duration;
use eficore::bootloader_interface::BootloaderInterface;
use eficore::platform::timer::PlatformTimer;
use log::{info, warn};
use uefi::ResultExt;
use uefi::boot::TimerTrigger;
use uefi::proto::console::text::{Input, Key, ScanCode};
use uefi_raw::table::boot::{EventType, Tpl};
/// The characters that can be used to select an entry from keys.
const ENTRY_NUMBER_TABLE: &[char] = &['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
/// Represents the operation that can be performed by the boot menu.
#[derive(PartialEq, Eq)]
enum MenuOperation {
/// The user selected a numbered entry.
Number(usize),
/// The user selected the escape key to exit the boot menu.
Exit,
/// The user selected the enter key to display the entries again.
Continue,
/// Timeout occurred.
Timeout,
/// No operation should be performed.
Nop,
}
/// Read a key from the input device with a duration, returning the [MenuOperation] that was
/// performed.
fn read(input: &mut Input, timeout: &Duration) -> Result<MenuOperation> {
// The event to wait for a key press.
let key_event = input
.wait_for_key_event()
.context("unable to acquire key event")?;
// Timer event for timeout.
// SAFETY: The timer event creation allocated a timer pointer on the UEFI heap.
// This is validated safe as long as we are in boot services.
let timer_event = unsafe {
uefi::boot::create_event_ex(EventType::TIMER, Tpl::CALLBACK, None, None, None)
.context("unable to create timer event")?
};
// The timeout is in increments of 100 nanoseconds.
let timeout_hundred_nanos = timeout.as_nanos() / 100;
// Check if the timeout is too large to fit into an u64.
if timeout_hundred_nanos > u64::MAX as u128 {
bail!("timeout duration overflow");
}
// Set a timer to trigger after the specified duration.
let trigger = TimerTrigger::Relative(timeout_hundred_nanos as u64);
uefi::boot::set_timer(&timer_event, trigger).context("unable to set timeout timer")?;
let mut events = vec![timer_event, key_event];
// Wait for either the timer event or the key event to trigger.
// Store the result so that we can free the timer event.
let event_result = uefi::boot::wait_for_event(&mut events)
.discard_errdata()
.context("unable to wait for event");
// Close the timer event that we acquired.
// We don't need to close the key event because it is owned globally.
// This should always be called in practice as events are not modified by wait_for_event.
if let Some(timer_event) = events.into_iter().next() {
// Store the result of the close event so we can determine if we can safely assert it.
let close_event_result =
uefi::boot::close_event(timer_event).context("unable to close timer event");
if event_result.is_err()
&& let Err(ref close_event_error) = close_event_result
{
// Log a warning if we failed to close the timer event.
// This is done to ensure we don't mask the wait_for_event error.
warn!("unable to close timer event: {}", close_event_error);
} else {
// If we reach here, we can safely assert that the close event succeeded without
// masking the wait_for_event error.
close_event_result?;
}
}
// Acquire the event that triggered.
let event = event_result?;
// The first event is the timer event.
// If it has triggered, the user did not select a numbered entry.
if event == 0 {
return Ok(MenuOperation::Timeout);
}
// If we reach here, there is a key event.
let Some(key) = input.read_key().context("unable to read key")? else {
bail!("no key was pressed");
};
match key {
Key::Printable(c) => {
// If the key is not ascii, we can't process it.
if !c.is_ascii() {
return Ok(MenuOperation::Continue);
}
// Convert the key to a char.
let c: char = c.into();
// Find the key pressed in the entry number table or continue.
Ok(ENTRY_NUMBER_TABLE
.iter()
.position(|&x| x == c)
.map(MenuOperation::Number)
.unwrap_or(MenuOperation::Continue))
}
// The escape key is used to exit the boot menu.
Key::Special(ScanCode::ESCAPE) => Ok(MenuOperation::Exit),
// If the special key is unknown, do nothing.
Key::Special(_) => Ok(MenuOperation::Nop),
}
}
/// Selects an entry from the list of entries using the boot menu.
fn select_with_input<'a>(
input: &mut Input,
timeout: Duration,
entries: &'a [BootableEntry],
) -> Result<&'a BootableEntry> {
loop {
// If the timeout is not zero, let's display the boot menu.
if !timeout.is_zero() {
// Until a pretty menu is available, we just print all the entries.
info!("Boot Menu:");
for (index, entry) in entries.iter().enumerate() {
let title = entry.context().stamp(&entry.declaration().title);
info!(" [{}] {}", index, title);
}
}
// Read from input until a valid operation is selected.
let operation = loop {
// If the timeout is zero, we can exit immediately because there is nothing to do.
if timeout.is_zero() {
break MenuOperation::Exit;
}
info!("Select a boot entry using the number keys.");
info!("Press Escape to exit and enter to display the entries again.");
let operation = read(input, &timeout)?;
if operation != MenuOperation::Nop {
break operation;
}
};
match operation {
// Entry was selected by number. If the number is invalid, we continue.
MenuOperation::Number(index) => {
let Some(entry) = entries.get(index) else {
info!("invalid entry number");
continue;
};
return Ok(entry);
}
// When the user exits the boot menu or a timeout occurs, we should
// boot the default entry, if any.
MenuOperation::Exit | MenuOperation::Timeout => {
return entries
.iter()
.find(|item| item.is_default())
.context("no default entry available");
}
// If the operation is to continue or nop, we can just run the loop again.
MenuOperation::Continue | MenuOperation::Nop => {
continue;
}
}
}
}
/// Shows a boot menu to select a bootable entry to boot.
/// The actual work is done internally in [select_with_input] which is called
/// within the context of the standard input device.
pub fn select<'live>(
timer: &'live PlatformTimer,
timeout: Duration,
entries: &'live [BootableEntry],
) -> Result<&'live BootableEntry> {
// Notify the bootloader interface that we are about to display the menu.
BootloaderInterface::mark_menu(timer)
.context("unable to mark menu display in bootloader interface")?;
// Acquire the standard input device and run the boot menu.
uefi::system::with_stdin(move |input| select_with_input(input, timeout, entries))
}

137
crates/boot/src/options.rs Normal file
View File

@@ -0,0 +1,137 @@
use crate::options::parser::{OptionDescription, OptionForm, OptionsRepresentable};
use alloc::collections::BTreeMap;
use alloc::string::{String, ToString};
use anyhow::{Context, Result, bail};
/// Acquire arguments from UEFI environment.
pub mod env;
/// The Sprout options parser.
pub mod parser;
/// Default configuration file path.
const DEFAULT_CONFIG_PATH: &str = "\\sprout.toml";
/// The parsed options of sprout.
#[derive(Debug)]
pub struct SproutOptions {
/// Configures Sprout automatically based on the environment.
pub autoconfigure: bool,
/// Path to a configuration file to load.
pub config: String,
/// Entry to boot without showing the boot menu.
pub boot: Option<String>,
/// Force display of the boot menu.
pub force_menu: bool,
/// The timeout for the boot menu in seconds.
pub menu_timeout: Option<u64>,
}
/// The default Sprout options.
impl Default for SproutOptions {
fn default() -> Self {
Self {
autoconfigure: false,
config: DEFAULT_CONFIG_PATH.to_string(),
boot: None,
force_menu: false,
menu_timeout: None,
}
}
}
/// The options parser mechanism for Sprout.
impl OptionsRepresentable for SproutOptions {
/// Produce the [SproutOptions] structure.
type Output = Self;
/// All the Sprout options that are defined.
fn options() -> &'static [(&'static str, OptionDescription<'static>)] {
&[
(
"autoconfigure",
OptionDescription {
description: "Enable Sprout Autoconfiguration",
form: OptionForm::Flag,
},
),
(
"config",
OptionDescription {
description: "Path to Sprout configuration file",
form: OptionForm::Value,
},
),
(
"boot",
OptionDescription {
description: "Entry to boot, bypassing the menu",
form: OptionForm::Value,
},
),
(
"force-menu",
OptionDescription {
description: "Force showing of the boot menu",
form: OptionForm::Flag,
},
),
(
"menu-timeout",
OptionDescription {
description: "Boot menu timeout, in seconds",
form: OptionForm::Value,
},
),
(
"help",
OptionDescription {
description: "Display Sprout Help",
form: OptionForm::Help,
},
),
]
}
/// Produces [SproutOptions] from the parsed raw `options` map.
fn produce(options: BTreeMap<String, Option<String>>) -> Result<Self> {
// Use the default value of sprout options and have the raw options be parsed into it.
let mut result = Self::default();
for (key, value) in options {
match key.as_str() {
"autoconfigure" => {
// Enable autoconfiguration.
result.autoconfigure = true;
}
"config" => {
// The configuration file to load.
result.config = value.context("--config option requires a value")?;
}
"boot" => {
// The entry to boot.
result.boot = Some(value.context("--boot option requires a value")?);
}
"force-menu" => {
// Force showing of the boot menu.
result.force_menu = true;
}
"menu-timeout" => {
// The timeout for the boot menu in seconds.
let value = value.context("--menu-timeout option requires a value")?;
let value = value
.parse::<u64>()
.context("menu-timeout must be a number")?;
result.menu_timeout = Some(value);
}
_ => bail!("unknown option: --{key}"),
}
}
Ok(result)
}
}

View File

@@ -0,0 +1,77 @@
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::{Context, Result, bail};
use uefi::proto::loaded_image::{LoadOptionsError, LoadedImage};
/// Loads the command-line arguments passed to Sprout.
pub fn args() -> Result<Vec<String>> {
// Acquire the image handle of Sprout.
let handle = uefi::boot::image_handle();
// Open the LoadedImage protocol for Sprout.
let loaded_image = uefi::boot::open_protocol_exclusive::<LoadedImage>(handle)
.context("unable to open loaded image protocol for sprout")?;
// Load the command-line argument string.
let options = match loaded_image.load_options_as_cstr16() {
// Load options were passed. We will return them for processing.
Ok(options) => options,
// No load options were passed. We will return an empty vector.
Err(LoadOptionsError::NotSet) => {
return Ok(Vec::new());
}
Err(LoadOptionsError::NotAligned) => {
bail!("load options are not properly aligned");
}
Err(LoadOptionsError::InvalidString(error)) => {
bail!("load options are not a valid string: {}", error);
}
};
// Convert the options to a string.
let options = options.to_string();
// Use shlex to parse the options.
// If shlex fails, we will fall back to a simple whitespace split.
let mut args = shlex::split(&options).unwrap_or_else(|| {
options
.split_ascii_whitespace()
.map(|string| string.to_string())
.collect::<Vec<_>>()
});
// If there is a first argument, check if it is not an option.
// If it is not, we will assume it is the path to the executable and remove it.
if let Some(arg) = args.first()
&& !arg.starts_with('-')
{
args.remove(0);
}
// Correct firmware that may add invalid arguments at the start.
// Witnessed this on a Dell Precision 5690 when direct booting.
loop {
// Grab the first argument or break.
let Some(arg) = args.first() else {
break;
};
// Check if the argument is a valid character.
// If it is not, remove it and continue.
let Some(first_character) = arg.chars().next() else {
break;
};
// If the character is not a printable character or a backtick, remove it and continue.
if first_character < 0x1f as char || first_character == '`' {
args.remove(0);
continue;
}
break;
}
Ok(args)
}

View File

@@ -0,0 +1,153 @@
use crate::options::env;
use alloc::collections::BTreeMap;
use alloc::string::{String, ToString};
use anyhow::{Context, Result, bail};
use core::ptr::null_mut;
use log::info;
use uefi_raw::Status;
/// The type of option. This disambiguates different behavior
/// of how options are handled.
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq)]
pub enum OptionForm {
/// A flag, like --verbose.
Flag,
/// A value, in the form --abc 123 or --abc=123.
Value,
/// Help flag, like --help.
Help,
}
/// The description of an option, used in the options parser
/// to make decisions about how to progress.
#[derive(Debug, Clone)]
pub struct OptionDescription<'a> {
/// The description of the option.
pub description: &'a str,
/// The type of option to parse as.
pub form: OptionForm,
}
/// Represents a type that can be parsed from command line arguments.
/// This is a super minimal options parser mechanism just for Sprout.
pub trait OptionsRepresentable {
/// The output type that parsing will produce.
type Output;
/// The configured options for this type. This should describe all the options
/// that are valid to produce the type. The left hand side is the name of the option,
/// and the right hand side is the description.
fn options() -> &'static [(&'static str, OptionDescription<'static>)];
/// Produces the type by taking the `options` and processing it into the output.
fn produce(options: BTreeMap<String, Option<String>>) -> Result<Self::Output>;
/// For minimalism, we don't want a full argument parser. Instead, we use
/// a simple --xyz = xyz: None and --abc 123 = abc: Some("123") format.
/// We also support --abc=123 = abc: Some("123") format.
fn parse_raw() -> Result<BTreeMap<String, Option<String>>> {
// Access the configured options for this type.
let configured: BTreeMap<_, _> = BTreeMap::from_iter(Self::options().to_vec());
// Collect all the arguments to Sprout.
// Skip the first argument, which is the path to our executable.
let args = env::args()?;
// Represent options as key-value pairs.
let mut options = BTreeMap::new();
// Iterators makes this way easier.
let mut iterator = args.into_iter().peekable();
loop {
// Consume the next option, if any.
let Some(option) = iterator.next() else {
break;
};
// If the option doesn't start with --, that is invalid.
if !option.starts_with("--") {
bail!("invalid option: {option}");
}
// Strip the -- prefix off.
let mut option = option["--".len()..].trim().to_string();
// An optional value.
let mut value = None;
// Check if the option is of the form --abc=123
if let Some((part_key, part_value)) = option.split_once('=') {
let part_key = part_key.to_string();
let part_value = part_value.to_string();
option = part_key;
value = Some(part_value);
}
// Error on empty option names.
if option.is_empty() {
bail!("invalid empty option");
}
// Find the description of the configured option, if any.
let Some(description) = configured.get(option.as_str()) else {
bail!("invalid option: --{option}");
};
// Check if the option requires a value and error if none was provided.
if description.form == OptionForm::Value && value.is_none() {
// Check for the next value.
let maybe_next = iterator.peek();
// If the next value isn't another option, set the value to the next value.
// Otherwise, it is None.
value = if let Some(next) = maybe_next
&& !next.starts_with("--")
{
iterator.next()
} else {
None
};
}
// If the option form does not support a value and there is a value, error.
if description.form != OptionForm::Value && value.is_some() {
bail!("option --{} does not take a value", option);
}
// Handle the --help flag case.
if description.form == OptionForm::Help {
// Generic configured options output.
info!("Configured Options:");
for (name, description) in &configured {
info!(
" --{}{}: {}",
name,
if description.form == OptionForm::Value {
" <value>"
} else {
""
},
description.description
);
}
// Exit because the help has been displayed.
unsafe {
uefi::boot::exit(uefi::boot::image_handle(), Status::SUCCESS, 0, null_mut());
};
}
// Insert the option and the value into the map.
options.insert(option, value);
}
Ok(options)
}
/// Parses the program arguments as a [Self::Output], calling [Self::parse_raw] and [Self::produce].
fn parse() -> Result<Self::Output> {
// Parse the program arguments into a raw map.
let options = Self::parse_raw().context("unable to parse options")?;
// Produce the options from the map.
Self::produce(options)
}
}

26
crates/boot/src/phases.rs Normal file
View File

@@ -0,0 +1,26 @@
use crate::actions;
use crate::context::SproutContext;
use alloc::format;
use alloc::rc::Rc;
use anyhow::{Context, Result};
use edera_sprout_config::phases::PhaseConfiguration;
/// Executes the specified [phase] of the boot process.
/// The value [phase] should be a reference of a specific phase in the [PhasesConfiguration].
/// Any error from the actions is propagated into the [Result] and will interrupt further
/// execution of phase actions.
pub fn phase(context: Rc<SproutContext>, phase: &[PhaseConfiguration]) -> Result<()> {
for item in phase {
let mut context = context.fork();
// Insert the values into the context.
context.insert(&item.values);
let context = context.freeze();
// Execute all the actions in this phase configuration.
for action in item.actions.iter() {
actions::execute(context.clone(), action)
.context(format!("unable to execute action '{}'", action))?;
}
}
Ok(())
}

2
crates/boot/src/sbat.csv Normal file
View File

@@ -0,0 +1,2 @@
sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
sprout,1,Edera,sprout,{version},https://sprout.edera.dev
1 sbat 1 SBAT Version sbat 1 https://github.com/rhboot/shim/blob/main/SBAT.md
2 sprout 1 Edera sprout {version} https://sprout.edera.dev

2
crates/boot/src/sbat.rs Normal file
View File

@@ -0,0 +1,2 @@
// Include the generated sbat section in this file.
include!(concat!(env!("OUT_DIR"), "/sbat.generated.rs"));

26
crates/boot/src/utils.rs Normal file
View File

@@ -0,0 +1,26 @@
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use sha2::{Digest, Sha256};
/// Implements a version comparison algorithm according to the BLS specification.
pub mod vercmp;
/// Combine a sequence of strings into a single string, separated by spaces, ignoring empty strings.
pub fn combine_options<T: AsRef<str>>(options: impl Iterator<Item = T>) -> String {
options
.flat_map(|item| empty_is_none(Some(item)))
.map(|item| item.as_ref().to_string())
.collect::<Vec<_>>()
.join(" ")
}
/// Produce a unique hash for the input.
/// This uses SHA-256, which is unique enough but relatively short.
pub fn unique_hash(input: &str) -> String {
hex::encode(Sha256::digest(input.as_bytes()))
}
/// Filter a string-like Option `input` such that an empty string is [None].
pub fn empty_is_none<T: AsRef<str>>(input: Option<T>) -> Option<T> {
input.filter(|input| !input.as_ref().is_empty())
}

View File

@@ -0,0 +1,184 @@
use core::cmp::Ordering;
use core::iter::Peekable;
/// Handles single character advancement and comparison.
macro_rules! handle_single_char {
($ca: expr, $cb:expr, $a_chars:expr, $b_chars:expr, $c:expr) => {
match ($ca == $c, $cb == $c) {
(true, false) => return Ordering::Less,
(false, true) => return Ordering::Greater,
(true, true) => {
$a_chars.next();
$b_chars.next();
continue;
}
_ => {}
}
};
}
/// Compares two strings using the BLS version comparison specification.
/// Handles optional values as well by comparing only if both are specified.
pub fn compare_versions_optional(a: Option<&str>, b: Option<&str>) -> Ordering {
match (a, b) {
// If both have values, compare them.
(Some(a), Some(b)) => compare_versions(a, b),
// If the second value is None, then `a` is less than `b`.
(Some(_a), None) => Ordering::Less,
// If the first value is None, the `a` is greater than `b`.
(None, Some(_b)) => Ordering::Greater,
// If both values are None, return that they are equal.
(None, None) => Ordering::Equal,
}
}
/// Compares two strings using the BLS version comparison specification.
/// See: https://uapi-group.org/specifications/specs/version_format_specification/
pub fn compare_versions(a: &str, b: &str) -> Ordering {
// Acquire a peekable iterator for each string.
let mut a_chars = a.chars().peekable();
let mut b_chars = b.chars().peekable();
// Loop until we have reached the end of one of the strings.
loop {
// Skip invalid characters in both strings.
skip_invalid(&mut a_chars);
skip_invalid(&mut b_chars);
// Check if either string has ended.
match (a_chars.peek(), b_chars.peek()) {
// No more characters in either string.
(None, None) => return Ordering::Equal,
// One string has ended, the other hasn't.
(None, Some(_)) => return Ordering::Less,
(Some(_), None) => return Ordering::Greater,
// Both strings have characters left.
(Some(&ca), Some(&cb)) => {
// Handle the ~ character.
handle_single_char!(ca, cb, a_chars, b_chars, '~');
// Handle '-' character.
handle_single_char!(ca, cb, a_chars, b_chars, '-');
// Handle the '^' character.
handle_single_char!(ca, cb, a_chars, b_chars, '^');
// Handle the '.' character.
handle_single_char!(ca, cb, a_chars, b_chars, '.');
// Handle digits with numerical comparison.
// We key off of the A character being a digit intentionally as we presume
// this indicates it will be the same at this position.
if ca.is_ascii_digit() || cb.is_ascii_digit() {
let result = compare_numeric(&mut a_chars, &mut b_chars);
if result != Ordering::Equal {
return result;
}
continue;
}
// Handle letters with alphabetical comparison.
// We key off of the A character being alphabetical intentionally as we presume
// this indicates it will be the same at this position.
if ca.is_ascii_alphabetic() || cb.is_ascii_alphabetic() {
let result = compare_alphabetic(&mut a_chars, &mut b_chars);
if result != Ordering::Equal {
return result;
}
continue;
}
}
}
}
}
/// Skips characters that are not in the valid character set.
fn skip_invalid<I: Iterator<Item = char>>(iter: &mut Peekable<I>) {
while let Some(&c) = iter.peek() {
if is_valid_char(c) {
break;
}
iter.next();
}
}
/// Checks if a character is in the valid character set for comparison.
fn is_valid_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '-' | '.' | '~' | '^')
}
/// Compares numerical prefixes by extracting numbers.
fn compare_numeric<I: Iterator<Item = char>>(
iter_a: &mut Peekable<I>,
iter_b: &mut Peekable<I>,
) -> Ordering {
let num_a = extract_number(iter_a);
let num_b = extract_number(iter_b);
num_a.cmp(&num_b)
}
/// Extracts a number from the iterator, skipping leading zeros.
fn extract_number<I: Iterator<Item = char>>(iter: &mut Peekable<I>) -> u64 {
// Skip leading zeros
while let Some(&'0') = iter.peek() {
iter.next();
}
let mut num = 0u64;
while let Some(&c) = iter.peek() {
if c.is_ascii_digit() {
iter.next();
num = num.saturating_mul(10).saturating_add(c as u64 - '0' as u64);
} else {
break;
}
}
num
}
/// Compares alphabetical prefixes
/// Capital letters compare lower than lowercase letters (B < a)
fn compare_alphabetic<I: Iterator<Item = char>>(
iter_a: &mut Peekable<I>,
iter_b: &mut Peekable<I>,
) -> Ordering {
loop {
return match (iter_a.peek(), iter_b.peek()) {
(Some(&ca), Some(&cb)) if ca.is_ascii_alphabetic() && cb.is_ascii_alphabetic() => {
if ca == cb {
// Same character, we should continue.
iter_a.next();
iter_b.next();
continue;
}
// Different characters found.
// All capital letters compare lower than lowercase letters.
match (ca.is_ascii_uppercase(), cb.is_ascii_uppercase()) {
(true, false) => Ordering::Less, // uppercase < lowercase
(false, true) => Ordering::Greater, // lowercase > uppercase
(true, true) => ca.cmp(&cb), // both are uppercase
(false, false) => ca.cmp(&cb), // both are lowercase
}
}
(Some(&ca), Some(_)) if ca.is_ascii_alphabetic() => {
// a has letters, b doesn't
Ordering::Greater
}
(Some(_), Some(&cb)) if cb.is_ascii_alphabetic() => {
// b has letters, a doesn't
Ordering::Less
}
(Some(&ca), None) if ca.is_ascii_alphabetic() => Ordering::Greater,
(None, Some(&cb)) if cb.is_ascii_alphabetic() => Ordering::Less,
_ => Ordering::Equal,
};
}
}