chore(code): split much of the efi support code to crates/eficore

This commit is contained in:
2025-11-03 20:47:21 -05:00
parent 48497700d8
commit 632781abbf
39 changed files with 440 additions and 378 deletions

View File

@@ -0,0 +1,317 @@
use crate::bootloader_interface::bitflags::LoaderFeatures;
use crate::platform::timer::PlatformTimer;
use crate::variables::{VariableClass, VariableController};
use alloc::format;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::{Context, Result};
use uefi::proto::device_path::DevicePath;
use uefi::{Guid, guid};
use uefi_raw::table::runtime::VariableVendor;
/// bitflags: LoaderFeatures bitflags.
mod bitflags;
/// The name of the bootloader to tell the system.
const LOADER_NAME: &str = "Sprout";
/// Represents the configured timeout for the bootloader interface.
pub enum BootloaderInterfaceTimeout {
/// Force the menu to be shown.
MenuForce,
/// Hide the menu.
MenuHidden,
/// Disable the menu.
MenuDisabled,
/// Set a timeout for the menu.
Timeout(u64),
/// Timeout is unspecified.
Unspecified,
}
/// Bootloader Interface support.
pub struct BootloaderInterface;
impl BootloaderInterface {
/// Bootloader Interface GUID from https://systemd.io/BOOT_LOADER_INTERFACE
const VENDOR: VariableController = VariableController::new(VariableVendor(guid!(
"4a67b082-0a4c-41cf-b6c7-440b29bb8c4f"
)));
/// The feature we support in Sprout.
fn features() -> LoaderFeatures {
LoaderFeatures::Xbootldr
| LoaderFeatures::LoadDriver
| LoaderFeatures::Tpm2ActivePcrBanks
| LoaderFeatures::RetainShim
| LoaderFeatures::ConfigTimeout
| LoaderFeatures::ConfigTimeoutOneShot
| LoaderFeatures::MenuDisable
| LoaderFeatures::EntryDefault
| LoaderFeatures::EntryOneShot
}
/// Tell the system that Sprout was initialized at the current time.
pub fn mark_init(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeInitUSec", timer)
}
/// Tell the system that Sprout is about to execute the boot entry.
pub fn mark_exec(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeExecUSec", timer)
}
/// Tell the system that Sprout is about to display the menu.
pub fn mark_menu(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeMenuUSec", timer)
}
/// Tell the system about the current time as measured by the platform timer.
/// Sets the variable specified by `key` to the number of microseconds.
fn mark_time(key: &str, timer: &PlatformTimer) -> Result<()> {
// Measure the elapsed time since the hardware timer was started.
let elapsed = timer.elapsed_since_lifetime();
Self::VENDOR.set_cstr16(
key,
&elapsed.as_micros().to_string(),
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what loader is being used and our features.
pub fn set_loader_info() -> Result<()> {
// Set the LoaderInfo variable with the name of the loader.
Self::VENDOR
.set_cstr16(
"LoaderInfo",
LOADER_NAME,
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to set loader info variable")?;
// Set the LoaderFeatures variable with the features we support.
Self::VENDOR
.set_u64le(
"LoaderFeatures",
Self::features().bits(),
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to set loader features variable")?;
Ok(())
}
/// Tell the system the relative path to the partition root of the current bootloader.
pub fn set_loader_path(path: &DevicePath) -> Result<()> {
let subpath =
crate::path::device_path_subpath(path).context("unable to get loader path subpath")?;
Self::VENDOR.set_cstr16(
"LoaderImageIdentifier",
&subpath,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the partition GUID of the ESP Sprout was booted from is.
pub fn set_partition_guid(guid: &Guid) -> Result<()> {
Self::VENDOR.set_cstr16(
"LoaderDevicePartUUID",
&guid.to_string(),
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what boot entries are available.
pub fn set_entries<N: AsRef<str>>(entries: impl Iterator<Item = N>) -> Result<()> {
// Entries are stored as a null-terminated list of CString16 strings back to back.
// Iterate over the entries and convert them to CString16 placing them into data.
let mut data = Vec::new();
for entry in entries {
// Convert the entry to CString16 little endian.
let encoded = entry
.as_ref()
.encode_utf16()
.flat_map(|c| c.to_le_bytes())
.collect::<Vec<u8>>();
// Write the bytes into the data buffer.
data.extend_from_slice(&encoded);
// Add a null terminator to the end of the entry.
data.extend_from_slice(&[0, 0]);
}
// If no data was generated, we will do nothing.
if data.is_empty() {
return Ok(());
}
Self::VENDOR.set(
"LoaderEntries",
&data,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the selected boot entry is.
pub fn set_selected_entry(entry: String) -> Result<()> {
Self::VENDOR.set_cstr16(
"LoaderEntrySelected",
&entry,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system about the UEFI firmware we are running on.
pub fn set_firmware_info() -> Result<()> {
// Access the firmware revision.
let firmware_revision = uefi::system::firmware_revision();
// Access the UEFI revision.
let uefi_revision = uefi::system::uefi_revision();
// Format the firmware information string into something human-readable.
let firmware_info = format!(
"{} {}.{:02}",
uefi::system::firmware_vendor(),
firmware_revision >> 16,
firmware_revision & 0xffff,
);
Self::VENDOR.set_cstr16(
"LoaderFirmwareInfo",
&firmware_info,
VariableClass::BootAndRuntimeTemporary,
)?;
// Format the firmware revision into something human-readable.
let firmware_type = format!(
"UEFI {}.{:02}",
uefi_revision.major(),
uefi_revision.minor()
);
Self::VENDOR.set_cstr16(
"LoaderFirmwareType",
&firmware_type,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the number of active PCR banks is.
/// If this is zero, that is okay.
pub fn set_tpm2_active_pcr_banks(value: u32) -> Result<()> {
// Format the value into the specification format.
let value = format!("0x{:08x}", value);
Self::VENDOR.set_cstr16(
"LoaderTpm2ActivePcrBanks",
&value,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Retrieve the timeout value from the bootloader interface, using the specified `key`.
/// `remove` indicates whether, when found, we remove the variable.
fn get_timeout_value(key: &str, remove: bool) -> Result<Option<BootloaderInterfaceTimeout>> {
// Retrieve the timeout value from the bootloader interface.
let Some(value) = Self::VENDOR
.get_cstr16(key)
.context("unable to get timeout value")?
else {
return Ok(None);
};
// If we reach here, we know the value was specified.
// If `remove` is true, remove the variable.
if remove {
Self::VENDOR
.remove(key)
.context("unable to remove timeout variable")?;
}
// If the value is empty, return Unspecified.
if value.is_empty() {
return Ok(Some(BootloaderInterfaceTimeout::Unspecified));
}
// If the value is "menu-force", return MenuForce.
if value == "menu-force" {
return Ok(Some(BootloaderInterfaceTimeout::MenuForce));
}
// If the value is "menu-hidden", return MenuHidden.
if value == "menu-hidden" {
return Ok(Some(BootloaderInterfaceTimeout::MenuHidden));
}
// If the value is "menu-disabled", return MenuDisabled.
if value == "menu-disabled" {
return Ok(Some(BootloaderInterfaceTimeout::MenuDisabled));
}
// Parse the value as a u64 to decode an numeric value.
let value = value
.parse::<u64>()
.context("unable to parse timeout value")?;
// The specification says that a value of 0 means that the menu should be hidden.
if value == 0 {
return Ok(Some(BootloaderInterfaceTimeout::MenuHidden));
}
// If we reach here, we know it must be a real timeout value.
Ok(Some(BootloaderInterfaceTimeout::Timeout(value)))
}
/// Get the timeout from the bootloader interface.
/// This indicates how the menu should behave.
/// If no values are set, Unspecified is returned.
pub fn get_timeout() -> Result<BootloaderInterfaceTimeout> {
// Attempt to acquire the value of the LoaderConfigTimeoutOneShot variable.
// This should take precedence over the LoaderConfigTimeout variable.
let oneshot = Self::get_timeout_value("LoaderConfigTimeoutOneShot", true)
.context("unable to check for LoaderConfigTimeoutOneShot variable")?;
// If oneshot was found, return it.
if let Some(oneshot) = oneshot {
return Ok(oneshot);
}
// Attempt to acquire the value of the LoaderConfigTimeout variable.
// This will be used if the LoaderConfigTimeoutOneShot variable is not set.
let direct = Self::get_timeout_value("LoaderConfigTimeout", false)
.context("unable to check for LoaderConfigTimeout variable")?;
// If direct was found, return it.
if let Some(direct) = direct {
return Ok(direct);
}
// If we reach here, we know that neither variable was set.
// We provide the unspecified value instead.
Ok(BootloaderInterfaceTimeout::Unspecified)
}
/// Get the default entry set by the bootloader interface.
pub fn get_default_entry() -> Result<Option<String>> {
Self::VENDOR
.get_cstr16("LoaderEntryDefault")
.context("unable to get default entry from bootloader interface")
}
/// Get the oneshot entry set by the bootloader interface.
/// This should be the entry we boot.
pub fn get_oneshot_entry() -> Result<Option<String>> {
// Acquire the value of the LoaderEntryOneShot variable.
// If it is not set, return None.
let Some(value) = Self::VENDOR
.get_cstr16("LoaderEntryOneShot")
.context("unable to get oneshot entry from bootloader interface")?
else {
return Ok(None);
};
// Remove the oneshot entry from the bootloader interface.
Self::VENDOR
.remove("LoaderEntryOneShot")
.context("unable to remove oneshot entry")?;
// Return the oneshot value.
Ok(Some(value))
}
}

View File

@@ -0,0 +1,46 @@
use bitflags::bitflags;
bitflags! {
/// Feature bitflags for the bootloader interface.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LoaderFeatures: u64 {
/// Bootloader supports LoaderConfigTimeout.
const ConfigTimeout = 1 << 0;
/// Bootloader supports LoaderConfigTimeoutOneShot.
const ConfigTimeoutOneShot = 1 << 1;
/// Bootloader supports LoaderEntryDefault.
const EntryDefault = 1 << 2;
/// Bootloader supports LoaderEntryOneShot.
const EntryOneShot = 1 << 3;
/// Bootloader supports boot counting.
const BootCounting = 1 << 4;
/// Bootloader supports detection from XBOOTLDR partitions.
const Xbootldr = 1 << 5;
/// Bootloader supports the handling of random seeds.
const RandomSeed = 1 << 6;
/// Bootloader supports loading drivers.
const LoadDriver = 1 << 7;
/// Bootloader supports sort keys.
const SortKey = 1 << 8;
/// Bootloader supports saved entries.
const SavedEntry = 1 << 9;
/// Bootloader supports device trees.
const DeviceTree = 1 << 10;
/// Bootloader supports secure boot enroll.
const SecureBootEnroll = 1 << 11;
/// Bootloader retains the shim.
const RetainShim = 1 << 12;
/// Bootloader supports disabling the menu via the menu timeout variable.
const MenuDisable = 1 << 13;
/// Bootloader supports multi-profile UKI.
const MultiProfileUki = 1 << 14;
/// Bootloader reports URLs.
const ReportUrl = 1 << 15;
/// Bootloader supports type-1 UKIs.
const Type1Uki = 1 << 16;
/// Bootloader supports type-1 UKI urls.
const Type1UkiUrl = 1 << 17;
/// Bootloader indicates TPM2 active PCR banks.
const Tpm2ActivePcrBanks = 1 << 18;
}
}

View File

@@ -0,0 +1,58 @@
use alloc::vec;
use alloc::vec::Vec;
use anyhow::{Context, Result};
use uefi::proto::console::gop::{BltOp, BltPixel, BltRegion, GraphicsOutput};
/// Represents the EFI framebuffer.
pub struct Framebuffer {
/// The width of the framebuffer in pixels.
width: usize,
/// The height of the framebuffer in pixels.
height: usize,
/// The pixels of the framebuffer.
pixels: Vec<BltPixel>,
}
impl Framebuffer {
/// Creates a new framebuffer of the specified `width` and `height`.
pub fn new(width: usize, height: usize) -> Result<Self> {
// Verify that the size is valid during multiplication.
let size = width
.checked_mul(height)
.context("framebuffer size overflow")?;
// Initialize the pixel buffer with black pixels, with the verified size.
let pixels = vec![BltPixel::new(0, 0, 0); size];
Ok(Framebuffer {
width,
height,
pixels,
})
}
/// Mutably acquires a pixel of the framebuffer at the specified `x` and `y` coordinate.
pub fn pixel(&mut self, x: usize, y: usize) -> Option<&mut BltPixel> {
// Verify that the coordinates are within the bounds of the framebuffer.
if x >= self.width || y >= self.height {
return None;
}
// Calculate the index of the pixel safely, returning None if it overflows.
let index = y.checked_mul(self.width)?.checked_add(x)?;
// Return the pixel at the index. If the index is out of bounds, this will return None.
self.pixels.get_mut(index)
}
/// Blit the framebuffer to the specified `gop` [GraphicsOutput].
pub fn blit(&self, gop: &mut GraphicsOutput) -> Result<()> {
gop.blt(BltOp::BufferToVideo {
buffer: &self.pixels,
src: BltRegion::Full,
dest: (0, 0),
dims: (self.width, self.height),
})
.context("unable to blit framebuffer")?;
Ok(())
}
}

View File

@@ -0,0 +1,26 @@
use anyhow::{Context, Result};
use uefi::boot::SearchType;
use uefi::{Guid, Handle};
use uefi_raw::Status;
/// Find a handle that provides the specified `protocol`.
pub fn find_handle(protocol: &Guid) -> Result<Option<Handle>> {
// Locate the requested protocol handle.
match uefi::boot::locate_handle_buffer(SearchType::ByProtocol(protocol)) {
// If a handle is found, the protocol is available.
Ok(handles) => Ok(if handles.is_empty() {
None
} else {
Some(handles[0])
}),
// If an error occurs, check if it is because the protocol is not available.
// If so, return false. Otherwise, return the error.
Err(error) => {
if error.status() == Status::NOT_FOUND {
Ok(None)
} else {
Err(error).context("unable to determine if the protocol is available")
}
}
}
}

39
crates/eficore/src/lib.rs Normal file
View File

@@ -0,0 +1,39 @@
//! Sprout EFI Core.
//! This crate provides tools for working with the EFI environment.
#![no_std]
extern crate alloc;
/// EFI handle helpers.
pub mod handle;
/// Logging support for EFI applications.
pub mod logger;
/// Disk partitioning support infrastructure.
pub mod partition;
/// Path handling for UEFI.
pub mod path;
/// platform: Integration or support code for specific hardware platforms.
pub mod platform;
/// Secure Boot support.
pub mod secure;
/// Support for the shim loader application that enables Secure Boot.
pub mod shim;
/// String utilities.
pub mod strings;
/// Implements support for the bootloader interface specification.
pub mod bootloader_interface;
/// Support code for the EFI framebuffer.
pub mod framebuffer;
/// Support code for the media loader protocol.
pub mod media_loader;
/// setup: Code that initializes the UEFI environment for Sprout.
pub mod setup;
/// Support code for EFI variables.
pub mod variables;

View File

@@ -0,0 +1,94 @@
//! Based on: https://github.com/rust-osdev/uefi-rs/blob/main/uefi/src/helpers/logger.rs
use alloc::format;
use core::fmt::Write;
use core::ptr;
use core::sync::atomic::{AtomicPtr, Ordering};
use log::{Log, Record};
use uefi::proto::console::text::Output;
/// The global logger object.
static LOGGER: Logger = Logger::new();
/// Logging mechanism for Sprout.
/// Must be initialized to be used, as we use atomic pointers to store the output to write to.
pub struct Logger {
writer: AtomicPtr<Output>,
}
impl Default for Logger {
/// Creates a default logger, which is uninitialized with an output.
fn default() -> Self {
Self::new()
}
}
impl Logger {
/// Create a new logger with an output not specified.
/// This will cause the logger to not print anything until it is configured.
pub const fn new() -> Self {
Self {
writer: AtomicPtr::new(ptr::null_mut()),
}
}
/// Retrieves the pointer to the output.
/// SAFETY: This pointer might be null, it should be checked before use.
#[must_use]
fn output(&self) -> *mut Output {
self.writer.load(Ordering::Acquire)
}
/// Sets the output to write to.
///
/// # Safety
/// This function is unsafe because the output is technically leaked and unmanaged.
pub unsafe fn set_output(&self, output: *mut Output) {
self.writer.store(output, Ordering::Release);
}
}
impl Log for Logger {
/// Enable the logger always.
fn enabled(&self, _metadata: &log::Metadata<'_>) -> bool {
true
}
/// Log the specified `record` to the output if one is set.
fn log(&self, record: &Record) {
// Acquire the output. If one is not set, we do nothing.
let Some(output) = (unsafe { self.output().as_mut() }) else {
return;
};
// Format the log message.
let message = format!("{}", record.args());
// Iterate over every line, formatting the message and writing it to the output.
for line in message.lines() {
// The format writes the log level in front of every line of text.
let _ = writeln!(output, "[{:>5}] {}", record.level(), line);
}
}
/// This log is not buffered, so flushing isn't required.
fn flush(&self) {}
}
/// Initialize the logging environment, calling panic if something goes wrong.
pub fn init() {
// Retrieve the stdout handle and set it as the output for the global logger.
uefi::system::with_stdout(|stdout| unsafe {
// SAFETY: We are using the stdout handle to create a pointer to the output.
// The handle is global and is guaranteed to be valid for the lifetime of the program.
LOGGER.set_output(stdout);
});
// Set the logger to the global logger.
if let Err(error) = log::set_logger(&LOGGER) {
panic!("unable to set logger: {}", error);
}
// Set the max level to the level specified by the log features.
log::set_max_level(log::STATIC_MAX_LEVEL);
}

View File

@@ -0,0 +1,278 @@
use alloc::boxed::Box;
use alloc::vec::Vec;
use anyhow::{Context, Result, bail};
use core::ffi::c_void;
use core::ptr;
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::build::DevicePathBuilder;
use uefi::proto::device_path::build::media::Vendor;
use uefi::proto::media::load_file::LoadFile2;
use uefi::{Guid, Handle};
use uefi_raw::protocol::device_path::DevicePathProtocol;
use uefi_raw::protocol::media::LoadFile2Protocol;
use uefi_raw::{Boolean, Status};
pub mod constants;
/// The media loader protocol.
#[derive(Debug)]
#[repr(C)]
struct MediaLoaderProtocol {
/// This is the standard EFI LoadFile2 protocol.
pub load_file: unsafe extern "efiapi" fn(
this: *mut MediaLoaderProtocol,
file_path: *const DevicePathProtocol,
boot_policy: Boolean,
buffer_size: *mut usize,
buffer: *mut c_void,
) -> Status,
/// A pointer to a Box<[u8]> containing the data to load.
pub address: *mut c_void,
/// The length of the data to load.
pub length: usize,
}
/// Represents a media loader which has been registered in the UEFI stack.
/// You MUST call [MediaLoaderHandle::unregister] when ready to unregister.
/// [Drop] is not implemented for this type.
pub struct MediaLoaderHandle {
/// The handle of the media loader in the UEFI stack.
handle: Handle,
/// The protocol interface pointer.
protocol: *mut MediaLoaderProtocol,
/// The device path pointer.
path: *mut DevicePath,
}
impl MediaLoaderHandle {
/// The behavior of this function is derived from how Linux calls it.
///
/// Linux calls this function by first passing a NULL `buffer`.
/// We must set the size of the buffer it should allocate in `buffer_size`.
/// The next call will pass a buffer of the right size, and we should copy
/// data into that buffer, checking whether it is safe to copy based on
/// the buffer size.
///
/// SAFETY: `this.address` and `this.length` are set by leaking a Box<[u8]>, so we can
/// be sure their pointers are valid when this is called. The caller must call this function
/// while inside UEFI boot services to ensure pointers are valid. Copying to `buffer` is
/// assumed valid because the caller must ensure `buffer` is valid by function contract.
unsafe extern "efiapi" fn load_file(
this: *mut MediaLoaderProtocol,
file_path: *const DevicePathProtocol,
boot_policy: Boolean,
buffer_size: *mut usize,
buffer: *mut c_void,
) -> Status {
// Check if the pointers are non-null first.
if this.is_null() || buffer_size.is_null() || file_path.is_null() {
return Status::INVALID_PARAMETER;
}
// Boot policy must not be true, and if it is, that is special behavior that is irrelevant
// for the media loader concept.
if boot_policy == Boolean::TRUE {
return Status::UNSUPPORTED;
}
// SAFETY: Validated as safe because this is checked to be non-null. It is the caller's
// responsibility to ensure that the right pointer is passed for [this].
unsafe {
// Check if the length and address are valid.
if (*this).length == 0 || (*this).address.is_null() {
return Status::NOT_FOUND;
}
// Check if the buffer is large enough.
// If it is not, we need to set the buffer size to the length of the data.
// This is the way that Linux calls this function, to check the size to allocate
// for the buffer that holds the data.
if buffer.is_null() || *buffer_size < (*this).length {
*buffer_size = (*this).length;
return Status::BUFFER_TOO_SMALL;
}
// Copy the data into the buffer.
buffer.copy_from((*this).address, (*this).length);
// Set the buffer size to the length of the data.
*buffer_size = (*this).length;
}
// We've successfully loaded the data.
Status::SUCCESS
}
/// Creates a new device path for the media loader based on a vendor `guid`.
fn device_path(guid: Guid) -> Result<Box<DevicePath>> {
// The buffer for the device path.
let mut path = Vec::new();
// Build a device path for the media loader with a vendor-specific guid.
let path = DevicePathBuilder::with_vec(&mut path)
.push(&Vendor {
vendor_guid: guid,
vendor_defined_data: &[],
})
.context("unable to produce device path")?
.finalize()
.context("unable to produce device path")?;
// Convert the device path to a boxed device path.
// This is safer than dealing with a pooled device path.
Ok(path.to_boxed())
}
/// Checks if the media loader is already registered with the UEFI stack.
fn already_registered(guid: Guid) -> Result<bool> {
// Acquire the device path for the media loader.
let path = Self::device_path(guid)?;
let mut existing_path = path.as_ref();
// Locate the LoadFile2 protocol for the media loader based on the device path.
let result = uefi::boot::locate_device_path::<LoadFile2>(&mut existing_path);
// If the result is okay, the media loader is already registered.
if result.is_ok() {
return Ok(true);
} else if let Err(error) = result
&& error.status() != Status::NOT_FOUND
// If the error is not found, that means it's not registered.
{
bail!("unable to locate media loader device path: {}", error);
}
// The media loader is not registered.
Ok(false)
}
/// Registers the provided `data` with the UEFI stack as media loader.
/// This uses a special device path that other EFI programs will look at
/// to load the data from.
pub fn register(guid: Guid, data: Box<[u8]>) -> Result<MediaLoaderHandle> {
// Acquire the vendor device path for the media loader.
let path = Self::device_path(guid)?;
// Check if the media loader is already registered.
// If it is, we can't register it again safely.
if Self::already_registered(guid)? {
bail!("media loader already registered");
}
// Leak the device path to pass it to the UEFI stack.
let path = Box::leak(path);
// Install a protocol interface for the device path.
// This ensures it can be located by other EFI programs.
let primary_handle = unsafe {
uefi::boot::install_protocol_interface(
None,
&DevicePathProtocol::GUID,
path.as_ffi_ptr() as *mut c_void,
)
}
.context("unable to install media loader device path handle")?;
// Leak the data we need to pass to the UEFI stack.
let data = Box::leak(data);
// Allocate a new box for the protocol interface.
let protocol = Box::new(MediaLoaderProtocol {
load_file: Self::load_file,
address: data.as_ptr() as *mut _,
length: data.len(),
});
// Leak the protocol interface to pass it to the UEFI stack.
let protocol = Box::leak(protocol);
// Install a protocol interface for the load file protocol for the media loader protocol.
let secondary_handle = unsafe {
uefi::boot::install_protocol_interface(
Some(primary_handle),
&LoadFile2Protocol::GUID,
// The UEFI API expects an opaque pointer here.
protocol as *mut MediaLoaderProtocol as *mut c_void,
)
};
// If installing the second protocol interface failed, we need to clean up after ourselves.
if secondary_handle.is_err() {
// Uninstall the protocol interface for the device path protocol.
// SAFETY: If we have reached this point, we know that the protocol is registered.
// If this fails, we have no choice but to leak memory. The error will be shown
// to the user, so at least they can see it. In most cases, catching this error
// will exit, so leaking is safe.
unsafe {
uefi::boot::uninstall_protocol_interface(
primary_handle,
&DevicePathProtocol::GUID,
path.as_ffi_ptr() as *mut c_void,
)
.context(
"unable to uninstall media loader device path handle, this will leak memory",
)?;
}
// SAFETY: We know that the protocol is leaked, so we can safely take a reference to it.
let protocol = unsafe { Box::from_raw(protocol) };
// SAFETY: We know that the data is leaked, so we can safely take a reference to it.
let data = unsafe { Box::from_raw(data) };
// SAFETY: We know that the path is leaked, so we can safely take a reference to it.
let path = unsafe { Box::from_raw(path) };
// Drop all the allocations explicitly to clarify the lifetime.
drop(protocol);
drop(data);
drop(path);
}
// If installing the second protocol interface failed, this will return the error.
// We should have already cleaned up after ourselves, so this is safe.
secondary_handle.context("unable to install media loader load file handle")?;
// Return a handle to the media loader.
Ok(Self {
handle: primary_handle,
protocol,
path,
})
}
/// Unregisters a media loader from the UEFI stack.
/// This will free the memory allocated by the passed data.
pub fn unregister(self) -> Result<()> {
// SAFETY: We know that the media loader is registered if the handle is valid,
// so we can safely uninstall it.
// We should have allocated the pointers involved, so we can safely free them.
unsafe {
// Uninstall the protocol interface for the device path protocol.
uefi::boot::uninstall_protocol_interface(
self.handle,
&DevicePathProtocol::GUID,
self.path as *mut c_void,
)
.context("unable to uninstall media loader device path handle")?;
// Uninstall the protocol interface for the load file protocol.
uefi::boot::uninstall_protocol_interface(
self.handle,
&LoadFile2Protocol::GUID,
self.protocol as *mut _ as *mut c_void,
)
.context("unable to uninstall media loader load file handle")?;
// Retrieve a box for the device path and protocols.
let path = Box::from_raw(self.path);
let protocol = Box::from_raw(self.protocol);
// Retrieve a box for the data we passed in.
let slice = ptr::slice_from_raw_parts_mut(protocol.address as *mut u8, protocol.length);
let data = Box::from_raw(slice);
// Drop all the allocations explicitly, as we don't want to leak them.
drop(path);
drop(protocol);
drop(data);
}
Ok(())
}
}

View File

@@ -0,0 +1,20 @@
/// These GUIDs are specific to Linux itself.
pub mod linux {
use uefi::{Guid, guid};
/// The device path GUID for the Linux EFI initrd.
pub const LINUX_EFI_INITRD_MEDIA_GUID: Guid = guid!("5568e427-68fc-4f3d-ac74-ca555231cc68");
}
/// These GUIDs were created by Edera to support Xen loading data
/// from Sprout and other EFI bootloaders.
pub mod xen {
use uefi::{Guid, guid};
/// The device path GUID for the Xen EFI config.
pub const XEN_EFI_CONFIG_MEDIA_GUID: Guid = guid!("bf61f458-a28e-46cd-93d7-07dac5e8cd66");
/// The device path GUID for the Xen EFI kernel.
pub const XEN_EFI_KERNEL_MEDIA_GUID: Guid = guid!("4010c8bf-6ced-40f5-a53f-e820aee8f34b");
/// The device path GUID for the Xen EFI ramdisk.
pub const XEN_EFI_RAMDISK_MEDIA_GUID: Guid = guid!("5db1fd01-c3cb-4812-b2ba-8791e52d4a89");
}

View File

@@ -0,0 +1,55 @@
use anyhow::{Context, Result};
use uefi::Guid;
use uefi::proto::device_path::DevicePath;
use uefi::proto::media::partition::PartitionInfo;
use uefi_raw::Status;
/// Represents the type of partition GUID that can be retrieved.
#[derive(PartialEq, Eq)]
pub enum PartitionGuidForm {
/// The partition GUID is the unique partition GUID.
Partition,
/// The partition GUID is the partition type GUID.
PartitionType,
}
/// Retrieve the partition / partition type GUID of the device root `path`.
/// This only works on GPT partitions. If the root is not a GPT partition, None is returned.
/// If the GUID is all zeros, this will return None.
pub fn partition_guid(path: &DevicePath, form: PartitionGuidForm) -> Result<Option<Guid>> {
// Clone the path so we can pass it to the UEFI stack.
let path = path.to_boxed();
let result = uefi::boot::locate_device_path::<PartitionInfo>(&mut &*path);
let handle = match result {
Ok(handle) => Ok(Some(handle)),
Err(error) => {
// If the error is NOT_FOUND or UNSUPPORTED, we can return None.
// These are non-fatal errors.
if error.status() == Status::NOT_FOUND || error.status() == Status::UNSUPPORTED {
Ok(None)
} else {
Err(error)
}
}
}
.context("unable to locate device path")?;
// If we have the handle, we can try to open the partition info protocol.
if let Some(handle) = handle {
// Open the partition info protocol.
let partition_info = uefi::boot::open_protocol_exclusive::<PartitionInfo>(handle)
.context("unable to open partition info protocol")?;
// Find the unique partition GUID.
// If this is not a GPT partition, this will produce None.
Ok(partition_info
.gpt_partition_entry()
.map(|entry| match form {
// Match the form of the partition GUID.
PartitionGuidForm::Partition => entry.unique_partition_guid,
PartitionGuidForm::PartitionType => entry.partition_type_guid.0,
})
.filter(|guid| !guid.is_zero()))
} else {
Ok(None)
}
}

174
crates/eficore/src/path.rs Normal file
View File

@@ -0,0 +1,174 @@
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::{Context, Result};
use core::ops::Deref;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::text::{AllowShortcuts, DevicePathFromText, DisplayOnly};
use uefi::proto::device_path::{DevicePath, PoolDevicePath};
use uefi::proto::media::fs::SimpleFileSystem;
use uefi::{CString16, Handle};
/// Represents the components of a resolved path.
pub struct ResolvedPath {
/// The root path of the resolved path. This is the device itself.
/// For example, "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/"
pub root_path: Box<DevicePath>,
/// The subpath of the resolved path. This is the path to the file.
/// For example, "\EFI\BOOT\BOOTX64.efi"
pub sub_path: Box<DevicePath>,
/// The full path of the resolved path. This is the safest path to use.
/// For example, "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
pub full_path: Box<DevicePath>,
/// The handle of the filesystem containing the path.
/// This can be used to acquire a [SimpleFileSystem] protocol to read the file.
pub filesystem_handle: Handle,
}
impl ResolvedPath {
/// Read the file specified by this path into a buffer and return it.
pub fn read_file(&self) -> Result<Vec<u8>> {
let fs = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(self.filesystem_handle)
.context("unable to open filesystem protocol")?;
let mut fs = FileSystem::new(fs);
let path = self
.sub_path
.to_string(DisplayOnly(false), AllowShortcuts(false))?;
let content = fs.read(Path::new(&path));
content.context("unable to read file contents")
}
}
/// Checks if a [CString16] contains a char `c`.
/// We need to call to_string() because CString16 doesn't support `contains` with a char.
fn cstring16_contains_char(string: &CString16, c: char) -> bool {
string.to_string().contains(c)
}
/// Parses the input `path` as a [DevicePath].
/// Uses the [DevicePathFromText] protocol exclusively, and will fail if it cannot acquire the protocol.
pub fn text_to_device_path(path: &str) -> Result<PoolDevicePath> {
let path = CString16::try_from(path).context("unable to convert path to CString16")?;
let device_path_from_text = uefi::boot::open_protocol_exclusive::<DevicePathFromText>(
uefi::boot::get_handle_for_protocol::<DevicePathFromText>()
.context("no device path from text protocol")?,
)
.context("unable to open device path from text protocol")?;
device_path_from_text
.convert_text_to_device_path(&path)
.context("unable to convert text to device path")
}
/// Grabs the root part of the `path`.
/// For example, given "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
/// it will give "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)"
pub fn device_path_root(path: &DevicePath) -> Result<String> {
let mut path = path
.node_iter()
.filter_map(|item| {
let item = item.to_string(DisplayOnly(false), AllowShortcuts(false));
if item
.as_ref()
.map(|item| cstring16_contains_char(item, '('))
.unwrap_or(false)
{
Some(item.unwrap_or_default())
} else {
None
}
})
.map(|item| item.to_string())
.collect::<Vec<_>>()
.join("/");
path.push('/');
Ok(path)
}
/// Grabs the part of the `path` after the root.
/// For example, given "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
/// it will give "\EFI\BOOT\BOOTX64.efi"
pub fn device_path_subpath(path: &DevicePath) -> Result<String> {
let path = path
.node_iter()
.filter_map(|item| {
let item = item.to_string(DisplayOnly(false), AllowShortcuts(false));
if item
.as_ref()
.map(|item| cstring16_contains_char(item, '('))
.unwrap_or(false)
{
None
} else {
Some(item.unwrap_or_default())
}
})
.map(|item| item.to_string())
.collect::<Vec<_>>()
.join("\\");
Ok(path)
}
/// Resolve a path specified by `input` to its various components.
/// Uses `default_root_path` as the base root if one is not specified in the path.
/// Returns [ResolvedPath] which contains the resolved components.
pub fn resolve_path(default_root_path: Option<&DevicePath>, input: &str) -> Result<ResolvedPath> {
let mut path = text_to_device_path(input).context("unable to convert text to path")?;
let path_has_device = path
.node_iter()
.next()
.map(|it| {
it.to_string(DisplayOnly(false), AllowShortcuts(false))
.unwrap_or_default()
})
.map(|it| it.to_string().contains('('))
.unwrap_or(false);
if !path_has_device {
let mut input = input.to_string();
if !input.starts_with('\\') {
input.insert(0, '\\');
}
let default_root_path = default_root_path.context("unable to get default root path")?;
input.insert_str(
0,
device_path_root(default_root_path)
.context("unable to get loaded image device root")?
.as_str(),
);
path = text_to_device_path(input.as_str()).context("unable to convert text to path")?;
}
let path = path.to_boxed();
let root = device_path_root(path.as_ref()).context("unable to convert root to path")?;
let root_path = text_to_device_path(root.as_str())
.context("unable to convert root to path")?
.to_boxed();
let root_path = root_path.as_ref();
// locate_device_path modifies the path, so we need to clone it.
let root_path_modifiable = root_path.to_owned();
let handle = uefi::boot::locate_device_path::<SimpleFileSystem>(&mut &*root_path_modifiable)
.context("unable to locate filesystem device path")?;
let subpath = device_path_subpath(path.deref()).context("unable to get device subpath")?;
Ok(ResolvedPath {
root_path: root_path.to_boxed(),
sub_path: text_to_device_path(subpath.as_str())?.to_boxed(),
full_path: path,
filesystem_handle: handle,
})
}
/// Read the contents of a file at the location specified with the `input` path.
/// Internally, this uses [resolve_path] to resolve the path to its various components.
/// [resolve_path] is passed the `default_root_path` which should specify a base root.
///
/// This acquires exclusive protocol access to the [SimpleFileSystem] protocol of the resolved
/// filesystem handle, so care must be taken to call this function outside a scope with
/// the filesystem handle protocol acquired.
pub fn read_file_contents(default_root_path: Option<&DevicePath>, input: &str) -> Result<Vec<u8>> {
let resolved = resolve_path(default_root_path, input)?;
resolved.read_file()
}

View File

@@ -0,0 +1,4 @@
/// Timer support.
pub mod timer;
/// TPM support.
pub mod tpm;

View File

@@ -0,0 +1,94 @@
// Referenced https://github.com/sheroz/tick_counter (MIT license) as a baseline.
// Architecturally modified to support UEFI and remove x86 (32-bit) support.
use core::time::Duration;
/// Support for aarch64 timers.
#[cfg(target_arch = "aarch64")]
pub mod aarch64;
/// Support for x86_64 timers.
#[cfg(target_arch = "x86_64")]
pub mod x86_64;
/// The tick frequency of the platform.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TickFrequency {
/// The platform provides the tick frequency.
Hardware(u64),
/// The tick frequency is measured internally.
Measured(u64),
}
impl TickFrequency {
/// Acquire the tick frequency reported by the platform.
fn ticks(&self) -> u64 {
match self {
TickFrequency::Hardware(frequency) => *frequency,
TickFrequency::Measured(frequency) => *frequency,
}
}
/// Calculate the nanoseconds represented by a tick.
fn nanos(&self) -> f64 {
1.0e9_f64 / (self.ticks() as f64)
}
/// Produce a duration from the provided elapsed `ticks` value.
fn duration(&self, ticks: u64) -> Duration {
let accuracy = self.nanos();
let nanos = ticks as f64 * accuracy;
Duration::from_nanos(nanos as u64)
}
}
/// Acquire the tick value reported by the platform.
fn arch_ticks() -> u64 {
#[cfg(target_arch = "aarch64")]
return aarch64::ticks();
#[cfg(target_arch = "x86_64")]
return x86_64::ticks();
}
/// Acquire the tick frequency reported by the platform.
fn arch_frequency() -> TickFrequency {
#[cfg(target_arch = "aarch64")]
let frequency = aarch64::frequency();
#[cfg(target_arch = "x86_64")]
let frequency = x86_64::frequency();
// If the frequency is 0, then something went very wrong and we should panic.
if frequency.ticks() == 0 {
panic!("timer frequency is zero");
}
frequency
}
/// Platform timer that allows measurement of the elapsed time.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PlatformTimer {
/// The start tick value.
start: u64,
/// The tick frequency of the platform.
frequency: TickFrequency,
}
impl PlatformTimer {
/// Start a platform timer at the current instant.
pub fn start() -> Self {
Self {
start: arch_ticks(),
frequency: arch_frequency(),
}
}
/// Measure the elapsed duration since the hardware started ticking upwards.
pub fn elapsed_since_lifetime(&self) -> Duration {
self.frequency.duration(arch_ticks())
}
/// Measure the elapsed duration since the timer was started.
pub fn elapsed_since_start(&self) -> Duration {
let duration = arch_ticks().wrapping_sub(self.start);
self.frequency.duration(duration)
}
}

View File

@@ -0,0 +1,23 @@
use crate::platform::timer::TickFrequency;
use core::arch::asm;
/// Reads the cntvct_el0 counter and returns the value.
pub fn ticks() -> u64 {
let counter: u64;
unsafe {
asm!("mrs x0, cntvct_el0", out("x0") counter);
}
counter
}
/// Our frequency is provided by cntfrq_el0 on the platform.
pub fn frequency() -> TickFrequency {
let frequency: u64;
unsafe {
asm!(
"mrs x0, cntfrq_el0",
out("x0") frequency
);
}
TickFrequency::Hardware(frequency)
}

View File

@@ -0,0 +1,29 @@
use crate::platform::timer::TickFrequency;
use core::time::Duration;
/// We will measure the frequency of the timer based on 1000 microseconds.
/// This will result in a call to BS->Stall(1000) in the end.
const MEASURE_FREQUENCY_DURATION: Duration = Duration::from_micros(1000);
/// Read the number of ticks from the platform timer.
pub fn ticks() -> u64 {
// SAFETY: Reads the platform timer, which is safe in any context.
unsafe { core::arch::x86_64::_rdtsc() }
}
/// Measure the frequency of the platform timer.
/// NOTE: Intentionally, we do not synchronize rdtsc during measurement to match systemd behavior.
fn measure_frequency() -> u64 {
let start = ticks();
uefi::boot::stall(MEASURE_FREQUENCY_DURATION);
let stop = ticks();
let elapsed = stop.wrapping_sub(start) as f64;
(elapsed / MEASURE_FREQUENCY_DURATION.as_secs_f64()) as u64
}
/// Acquire the platform timer frequency.
/// On x86_64, this is slightly expensive, so it should be done once.
pub fn frequency() -> TickFrequency {
let frequency = measure_frequency();
TickFrequency::Measured(frequency)
}

View File

@@ -0,0 +1,129 @@
use anyhow::{Context, Result};
use uefi::ResultExt;
use uefi::boot::ScopedProtocol;
use uefi::proto::tcg::PcrIndex;
use uefi::proto::tcg::v2::{PcrEventInputs, Tcg};
use uefi_raw::protocol::tcg::EventType;
use uefi_raw::protocol::tcg::v2::{Tcg2HashLogExtendEventFlags, Tcg2Protocol, Tcg2Version};
/// Represents the platform TPM.
pub struct PlatformTpm;
/// Represents an open TPM handle.
pub struct TpmProtocolHandle {
/// The version of the TPM protocol.
version: Tcg2Version,
/// The protocol itself.
protocol: ScopedProtocol<Tcg>,
}
impl TpmProtocolHandle {
/// Construct a new [TpmProtocolHandle] from the `version` and `protocol`.
pub fn new(version: Tcg2Version, protocol: ScopedProtocol<Tcg>) -> Self {
Self { version, protocol }
}
/// Access the version provided by the tcg2 protocol.
pub fn version(&self) -> Tcg2Version {
self.version
}
/// Access the protocol interface for tcg2.
pub fn protocol(&mut self) -> &mut ScopedProtocol<Tcg> {
&mut self.protocol
}
}
impl PlatformTpm {
/// The PCR for measuring the bootloader configuration into.
pub const PCR_BOOT_LOADER_CONFIG: PcrIndex = PcrIndex(5);
/// Acquire access to the TPM protocol handle, if possible.
/// Returns None if TPM is not available.
fn protocol() -> Result<Option<TpmProtocolHandle>> {
// Attempt to acquire the TCG2 protocol handle. If it's not available, return None.
let Some(handle) = crate::handle::find_handle(&Tcg2Protocol::GUID)
.context("unable to determine tpm presence")?
else {
return Ok(None);
};
// If we reach here, we've already validated that the handle
// implements the TCG2 protocol.
let mut protocol = uefi::boot::open_protocol_exclusive::<Tcg>(handle)
.context("unable to open tcg2 protocol")?;
// Acquire the capabilities of the TPM.
let capability = protocol
.get_capability()
.context("unable to get tcg2 boot service capability")?;
// If the TPM is not present, return None.
if !capability.tpm_present() {
return Ok(None);
}
// If the TPM is present, we need to determine the version of the TPM.
let version = capability.protocol_version;
// We have a TPM, so return the protocol version and the protocol handle.
Ok(Some(TpmProtocolHandle::new(version, protocol)))
}
/// Determines whether the platform TPM is present.
pub fn present() -> Result<bool> {
Ok(PlatformTpm::protocol()?.is_some())
}
/// Determine the number of active PCR banks on the TPM.
/// If no TPM is available, this will return zero.
pub fn active_pcr_banks() -> Result<u32> {
// Acquire access to the TPM protocol handle.
let Some(mut handle) = PlatformTpm::protocol()? else {
return Ok(0);
};
// Check if the TPM supports `GetActivePcrBanks`, and if it doesn't return zero.
if (handle.version().major < 1)
|| (handle.version().major == 1 && (handle.version().minor < 1))
{
return Ok(0);
}
// The safe wrapper for this function will decode the bitmap.
// Strictly speaking, it's not future-proof to re-encode that, but in practice it will work.
let banks = handle
.protocol()
.get_active_pcr_banks()
.context("unable to get active pcr banks")?;
// Return the number of active PCR banks.
Ok(banks.bits())
}
/// Log an event into the TPM pcr `pcr_index` with `buffer` as data. The `description`
/// is used to describe what the event is.
///
/// If a TPM is not available, this will do nothing.
pub fn log_event(pcr_index: PcrIndex, buffer: &[u8], description: &str) -> Result<()> {
// Acquire access to the TPM protocol handle.
let Some(mut handle) = PlatformTpm::protocol()? else {
return Ok(());
};
// Encode the description as UTF-8.
let description = description.as_bytes().to_vec();
// Construct an event input for the TPM.
let event = PcrEventInputs::new_in_box(pcr_index, EventType::IPL, &description)
.discard_errdata()
.context("unable to construct pcr event inputs")?;
// Log the event into the TPM.
handle
.protocol()
.hash_log_extend_event(Tcg2HashLogExtendEventFlags::empty(), buffer, &event)
.context("unable to log event to tpm")?;
Ok(())
}
}

View File

@@ -0,0 +1,14 @@
use crate::variables::VariableController;
use anyhow::Result;
/// Secure boot services.
pub struct SecureBoot;
impl SecureBoot {
/// Checks if Secure Boot is enabled on the system.
/// This might fail if retrieving the variable fails in an irrecoverable way.
pub fn enabled() -> Result<bool> {
// The SecureBoot variable will tell us whether Secure Boot is enabled at all.
VariableController::GLOBAL.get_bool("SecureBoot")
}
}

View File

@@ -0,0 +1,14 @@
use crate::logger;
use anyhow::{Context, Result};
/// Initializes the UEFI environment.
pub fn init() -> Result<()> {
// Initialize the logger for Sprout.
// NOTE: This cannot use a result type as errors need to be printed
// using the logger, which is not initialized until this returns.
logger::init();
// Initialize further UEFI internals.
uefi::helpers::init().context("unable to initialize uefi environment")?;
Ok(())
}

318
crates/eficore/src/shim.rs Normal file
View File

@@ -0,0 +1,318 @@
use crate::path::ResolvedPath;
use crate::secure::SecureBoot;
use crate::shim::hook::SecurityHook;
use crate::variables::{VariableClass, VariableController};
use alloc::boxed::Box;
use alloc::string::ToString;
use alloc::vec::Vec;
use anyhow::{Context, Result, anyhow, bail};
use core::ffi::c_void;
use core::pin::Pin;
use log::warn;
use uefi::Handle;
use uefi::boot::LoadImageSource;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
use uefi::proto::device_path::{DevicePath, FfiDevicePath};
use uefi::proto::unsafe_protocol;
use uefi_raw::table::runtime::VariableVendor;
use uefi_raw::{Guid, Status, guid};
/// Security hook support.
mod hook;
/// Support for the shim loader application for Secure Boot.
pub struct ShimSupport;
/// Input to the shim mechanisms.
pub enum ShimInput<'a> {
/// Data loaded into a buffer and ready to be verified, owned.
OwnedDataBuffer(Option<&'a ResolvedPath>, Pin<Box<[u8]>>),
/// Data loaded into a buffer and ready to be verified.
DataBuffer(Option<&'a ResolvedPath>, &'a [u8]),
/// Low-level data buffer provided by the security hook.
SecurityHookBuffer(Option<*const FfiDevicePath>, &'a [u8]),
/// Low-level owned data buffer provided by the security hook.
SecurityHookOwnedBuffer(Option<*const FfiDevicePath>, Pin<Box<[u8]>>),
/// Low-level path provided by the security hook.
SecurityHookPath(*const FfiDevicePath),
/// Data is provided as a resolved path. We will need to load the data to verify it.
/// The output will them return the loaded data.
ResolvedPath(&'a ResolvedPath),
}
impl<'a> ShimInput<'a> {
/// Accesses the buffer behind the shim input, if available.
pub fn buffer(&self) -> Option<&[u8]> {
match self {
ShimInput::OwnedDataBuffer(_, data) => Some(data),
ShimInput::SecurityHookOwnedBuffer(_, data) => Some(data),
ShimInput::SecurityHookBuffer(_, data) => Some(data),
ShimInput::SecurityHookPath(_) => None,
ShimInput::DataBuffer(_, data) => Some(data),
ShimInput::ResolvedPath(_) => None,
}
}
/// Accesses the full device path to the input.
pub fn file_path(&self) -> Option<&DevicePath> {
match self {
ShimInput::OwnedDataBuffer(path, _) => path.as_ref().map(|it| it.full_path.as_ref()),
ShimInput::DataBuffer(path, _) => path.as_ref().map(|it| it.full_path.as_ref()),
ShimInput::SecurityHookBuffer(path, _) => {
path.map(|it| unsafe { DevicePath::from_ffi_ptr(it) })
}
ShimInput::SecurityHookPath(path) => unsafe { Some(DevicePath::from_ffi_ptr(*path)) },
ShimInput::ResolvedPath(path) => Some(path.full_path.as_ref()),
ShimInput::SecurityHookOwnedBuffer(path, _) => {
path.map(|it| unsafe { DevicePath::from_ffi_ptr(it) })
}
}
}
/// Converts this input into an owned data buffer, where the data is loaded.
/// For ResolvedPath, this will read the file.
pub fn into_owned_data_buffer(self) -> Result<ShimInput<'a>> {
match self {
ShimInput::OwnedDataBuffer(root, data) => Ok(ShimInput::OwnedDataBuffer(root, data)),
ShimInput::DataBuffer(root, data) => Ok(ShimInput::OwnedDataBuffer(
root,
Box::into_pin(data.to_vec().into_boxed_slice()),
)),
ShimInput::SecurityHookPath(ffi_path) => {
// Acquire the file path.
let Some(path) = self.file_path() else {
bail!("unable to convert security hook path to device path");
};
// Convert the underlying path to a string.
let path = path
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device path to string")?;
let path = crate::path::resolve_path(None, &path.to_string())
.context("unable to resolve path")?;
// Read the file path.
let data = path.read_file()?;
Ok(ShimInput::SecurityHookOwnedBuffer(
Some(ffi_path),
Box::into_pin(data.to_vec().into_boxed_slice()),
))
}
ShimInput::SecurityHookBuffer(_, _) => {
bail!("unable to convert security hook buffer to owned data buffer")
}
ShimInput::ResolvedPath(path) => {
// Read the file path.
let data = path.read_file()?;
Ok(ShimInput::OwnedDataBuffer(
Some(path),
Box::into_pin(data.to_vec().into_boxed_slice()),
))
}
ShimInput::SecurityHookOwnedBuffer(path, data) => {
Ok(ShimInput::SecurityHookOwnedBuffer(path, data))
}
}
}
}
/// Output of the shim verification function.
/// Since the shim needs to load the data from disk, we will optimize by using that as the data
/// to actually boot.
pub enum ShimVerificationOutput {
/// The verification failed.
VerificationFailed(Status),
/// The data provided to the verifier was already a buffer.
VerifiedDataNotLoaded,
/// Verifying the data resulted in loading the data from the source.
/// This contains the data that was loaded, so it won't need to be loaded again.
VerifiedDataBuffer(Vec<u8>),
}
/// The shim lock protocol as defined by the shim loader application.
#[unsafe_protocol(ShimSupport::SHIM_LOCK_GUID)]
struct ShimLockProtocol {
/// Verify the data in `buffer` with the size `buffer_size` to determine if it is valid.
/// NOTE: On x86_64, this function uses SYSV calling conventions. On aarch64 it uses the
/// efiapi calling convention. This is truly wild, but you can verify it yourself by
/// looking at: https://github.com/rhboot/shim/blob/15.8/shim.h#L207-L212
/// There is no calling convention declared like there should be.
#[cfg(target_arch = "x86_64")]
pub shim_verify: unsafe extern "sysv64" fn(buffer: *const c_void, buffer_size: u32) -> Status,
#[cfg(target_arch = "aarch64")]
pub shim_verify: unsafe extern "efiapi" fn(buffer: *const c_void, buffer_size: u32) -> Status,
/// Unused function that is defined by the shim.
_generate_header: *mut c_void,
/// Unused function that is defined by the shim.
_read_header: *mut c_void,
}
impl ShimSupport {
/// Variable controller for the shim lock.
const SHIM_LOCK_VARIABLES: VariableController =
VariableController::new(VariableVendor(Self::SHIM_LOCK_GUID));
/// GUID for the shim lock protocol.
const SHIM_LOCK_GUID: Guid = guid!("605dab50-e046-4300-abb6-3dd810dd8b23");
/// GUID for the shim image loader protocol.
const SHIM_IMAGE_LOADER_GUID: Guid = guid!("1f492041-fadb-4e59-9e57-7cafe73a55ab");
/// Determines whether the shim is loaded.
pub fn loaded() -> Result<bool> {
Ok(crate::handle::find_handle(&Self::SHIM_LOCK_GUID)
.context("unable to find shim lock protocol")?
.is_some())
}
/// Determines whether the shim loader is available.
pub fn loader_available() -> Result<bool> {
Ok(crate::handle::find_handle(&Self::SHIM_IMAGE_LOADER_GUID)
.context("unable to find shim image loader protocol")?
.is_some())
}
/// Use the shim to validate the `input`, returning [ShimVerificationOutput] when complete.
pub fn verify(input: ShimInput) -> Result<ShimVerificationOutput> {
// Acquire the handle to the shim lock protocol.
let handle = crate::handle::find_handle(&Self::SHIM_LOCK_GUID)
.context("unable to find shim lock protocol")?
.ok_or_else(|| anyhow!("unable to find shim lock protocol"))?;
// Acquire the protocol exclusively to the shim lock.
let protocol = uefi::boot::open_protocol_exclusive::<ShimLockProtocol>(handle)
.context("unable to open shim lock protocol")?;
// If the input type is a device path, we need to load the data.
let maybe_loaded_data = match input {
ShimInput::OwnedDataBuffer(_, _data) => {
bail!("owned data buffer is not supported in the verification function");
}
ShimInput::SecurityHookBuffer(_, _) => None,
ShimInput::SecurityHookOwnedBuffer(_, _) => None,
ShimInput::DataBuffer(_, _) => None,
ShimInput::ResolvedPath(path) => Some(path.read_file()?),
ShimInput::SecurityHookPath(_) => None,
};
// Convert the input to a buffer.
// If the input provides the data buffer, we will use that.
// Otherwise, we will use the data loaded by this function.
let buffer = match &input {
ShimInput::OwnedDataBuffer(_root, data) => data,
ShimInput::DataBuffer(_root, data) => *data,
ShimInput::ResolvedPath(_path) => maybe_loaded_data
.as_deref()
.context("expected data buffer to be loaded already")?,
ShimInput::SecurityHookBuffer(_, data) => data,
ShimInput::SecurityHookOwnedBuffer(_, data) => data,
ShimInput::SecurityHookPath(_) => {
bail!("security hook path input not supported in the verification function")
}
};
// Check if the buffer is too large to verify.
if buffer.len() > u32::MAX as usize {
bail!("buffer is too large to verify with shim lock protocol");
}
// Call the shim verify function.
// SAFETY: The shim verify function is specified by the shim lock protocol.
// Calling this function is considered safe because the shim verify function is
// guaranteed to be defined by the environment if we are able to acquire the protocol.
let status = unsafe {
(protocol.shim_verify)(buffer.as_ptr() as *const c_void, buffer.len() as u32)
};
// If the verification failed, return the verification failure output.
if !status.is_success() {
return Ok(ShimVerificationOutput::VerificationFailed(status));
}
// If verification succeeded, return the validation output,
// which might include the loaded data.
Ok(maybe_loaded_data
.map(ShimVerificationOutput::VerifiedDataBuffer)
.unwrap_or(ShimVerificationOutput::VerifiedDataNotLoaded))
}
/// Load the image specified by the `input` and returns an image handle.
pub fn load(current_image: Handle, input: ShimInput) -> Result<Handle> {
// Determine whether Secure Boot is enabled.
let secure_boot =
SecureBoot::enabled().context("unable to determine if secure boot is enabled")?;
// Determine whether the shim is loaded.
let shim_loaded = Self::loaded().context("unable to determine if shim is loaded")?;
// Determine whether the shim loader is available.
let shim_loader_available =
Self::loader_available().context("unable to determine if shim loader is available")?;
// Determines whether LoadImage in Boot Services must be patched.
// Version 16 of the shim doesn't require extra effort to load Secure Boot binaries.
// If the image loader is installed, we can skip over the security hook.
let requires_security_hook = secure_boot && shim_loaded && !shim_loader_available;
// If the security hook is required, we will bail for now.
if requires_security_hook {
// Install the security hook, if possible. If it's not, this is necessary to continue,
// so we should bail.
let installed = SecurityHook::install().context("unable to install security hook")?;
if !installed {
bail!("unable to install security hook required for this platform");
}
}
// If the shim is loaded, we will need to retain the shim protocol to allow
// loading multiple images.
if shim_loaded {
// Retain the shim protocol after loading the image.
Self::retain()?;
}
// Converts the shim input to an owned data buffer.
let input = input
.into_owned_data_buffer()
.context("unable to convert input to loaded data buffer")?;
// Constructs a LoadImageSource from the input.
let source = LoadImageSource::FromBuffer {
buffer: input.buffer().context("unable to get buffer from input")?,
file_path: input.file_path(),
};
// Loads the image using Boot Services LoadImage function.
let result = uefi::boot::load_image(current_image, source).context("unable to load image");
// If the security override is required, we will uninstall the security hook.
if requires_security_hook {
let uninstall_result = SecurityHook::uninstall();
// Ensure we don't mask load image errors if uninstalling fails.
if result.is_err()
&& let Err(uninstall_error) = &uninstall_result
{
// Warn on the error since the load image error is more important.
warn!("unable to uninstall security hook: {}", uninstall_error);
} else {
// Otherwise, ensure we handle the original uninstallation result.
uninstall_result?;
}
}
result
}
/// Set the ShimRetainProtocol variable to indicate that shim should retain the protocols
/// for the full lifetime of boot services.
pub fn retain() -> Result<()> {
Self::SHIM_LOCK_VARIABLES
.set_bool(
"ShimRetainProtocol",
true,
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to retain shim protocol")?;
Ok(())
}
}

View File

@@ -0,0 +1,266 @@
use crate::shim::{ShimInput, ShimSupport, ShimVerificationOutput};
use anyhow::{Context, Result};
use core::slice;
use log::warn;
use spin::{Lazy, Mutex};
use uefi::proto::device_path::FfiDevicePath;
use uefi::proto::unsafe_protocol;
use uefi::{Guid, guid};
use uefi_raw::Status;
/// GUID for the EFI_SECURITY_ARCH protocol.
const SECURITY_ARCH_GUID: Guid = guid!("a46423e3-4617-49f1-b9ff-d1bfa9115839");
/// GUID for the EFI_SECURITY_ARCH2 protocol.
const SECURITY_ARCH2_GUID: Guid = guid!("94ab2f58-1438-4ef1-9152-18941a3a0e68");
/// EFI_SECURITY_ARCH protocol definition.
#[unsafe_protocol(SECURITY_ARCH_GUID)]
pub struct SecurityArchProtocol {
/// Determines the file authentication state.
pub file_authentication_state: unsafe extern "efiapi" fn(
this: *const SecurityArchProtocol,
status: u32,
path: *const FfiDevicePath,
) -> Status,
}
/// EFI_SECURITY_ARCH2 protocol definition.
#[unsafe_protocol(SECURITY_ARCH2_GUID)]
pub struct SecurityArch2Protocol {
/// Determines the file authentication.
pub file_authentication: unsafe extern "efiapi" fn(
this: *const SecurityArch2Protocol,
path: *const FfiDevicePath,
file_buffer: *const u8,
file_size: usize,
boot_policy: bool,
) -> Status,
}
/// Global state for the security hook.
struct SecurityHookState {
original_hook: SecurityArchProtocol,
original_hook2: SecurityArch2Protocol,
}
/// Global state for the security hook.
/// This is messy, but it is safe given the mutex.
static GLOBAL_HOOK_STATE: Lazy<Mutex<Option<SecurityHookState>>> = Lazy::new(|| Mutex::new(None));
/// Security hook helper.
pub struct SecurityHook;
impl SecurityHook {
/// Shared verifier logic for both hook types.
#[must_use]
fn verify(input: ShimInput) -> bool {
// Verify the input and convert the result to a status.
let status = match ShimSupport::verify(input) {
Ok(output) => match output {
// If the verification failed, return the access-denied status.
ShimVerificationOutput::VerificationFailed(status) => status,
// If the verification succeeded, return the success status.
ShimVerificationOutput::VerifiedDataNotLoaded => Status::SUCCESS,
ShimVerificationOutput::VerifiedDataBuffer(_) => Status::SUCCESS,
},
// If an error occurs, log the error since we can't return a better error.
// Then return the access-denied status.
Err(error) => {
warn!("unable to verify image: {}", error);
Status::ACCESS_DENIED
}
};
// If the status is not a success, log the status.
if !status.is_success() {
warn!("shim verification failed: {}", status);
}
// Return whether the status is a success.
// If it's not a success, the original hook should be called.
status.is_success()
}
/// File authentication state verifier for the EFI_SECURITY_ARCH protocol.
/// Takes the `path` and determines the verification.
unsafe extern "efiapi" fn arch_file_authentication_state(
this: *const SecurityArchProtocol,
status: u32,
path: *const FfiDevicePath,
) -> Status {
// Verify the path is not null.
if path.is_null() {
return Status::INVALID_PARAMETER;
}
// Construct a shim input from the path.
let input = ShimInput::SecurityHookPath(path);
// Convert the input to an owned data buffer.
let input = match input.into_owned_data_buffer() {
Ok(input) => input,
// If an error occurs, log the error and return the not found status.
Err(error) => {
warn!("unable to read data to be authenticated: {}", error);
return Status::NOT_FOUND;
}
};
// Verify the input, if it fails, call the original hook.
if !Self::verify(input) {
// Acquire the global hook state to grab the original hook.
let function = match GLOBAL_HOOK_STATE.lock().as_ref() {
// The hook state is available, so we can acquire the original hook.
Some(state) => state.original_hook.file_authentication_state,
// The hook state is not available, so we can't call the original hook.
None => {
warn!("global hook state is not available, unable to call original hook");
return Status::LOAD_ERROR;
}
};
// Call the original hook function to see what it reports.
// SAFETY: This function is safe to call as it is stored by us and is required
// in the UEFI specification.
unsafe { function(this, status, path) }
} else {
Status::SUCCESS
}
}
/// File authentication verifier for the EFI_SECURITY_ARCH2 protocol.
/// Takes the `path` and a file buffer to determine the verification.
unsafe extern "efiapi" fn arch2_file_authentication(
this: *const SecurityArch2Protocol,
path: *const FfiDevicePath,
file_buffer: *const u8,
file_size: usize,
boot_policy: bool,
) -> Status {
// Verify the path and file buffer are not null.
if path.is_null() || file_buffer.is_null() {
return Status::INVALID_PARAMETER;
}
// If the boot policy is true, we can't continue as we don't support that.
if boot_policy {
return Status::INVALID_PARAMETER;
}
// Construct a slice out of the file buffer and size.
let buffer = unsafe { slice::from_raw_parts(file_buffer, file_size) };
// Construct a shim input from the path.
let input = ShimInput::SecurityHookBuffer(Some(path), buffer);
// Verify the input, if it fails, call the original hook.
if !Self::verify(input) {
// Acquire the global hook state to grab the original hook.
let function = match GLOBAL_HOOK_STATE.lock().as_ref() {
// The hook state is available, so we can acquire the original hook.
Some(state) => state.original_hook2.file_authentication,
// The hook state is not available, so we can't call the original hook.
None => {
warn!("global hook state is not available, unable to call original hook");
return Status::LOAD_ERROR;
}
};
// Call the original hook function to see what it reports.
// SAFETY: This function is safe to call as it is stored by us and is required
// in the UEFI specification.
unsafe { function(this, path, file_buffer, file_size, boot_policy) }
} else {
Status::SUCCESS
}
}
/// Install the security hook if needed.
pub fn install() -> Result<bool> {
// Find the security arch protocol. If we can't find it, we will return false.
let Some(hook_arch) = crate::handle::find_handle(&SECURITY_ARCH_GUID)
.context("unable to check security arch existence")?
else {
return Ok(false);
};
// Find the security arch2 protocol. If we can't find it, we will return false.
let Some(hook_arch2) = crate::handle::find_handle(&SECURITY_ARCH2_GUID)
.context("unable to check security arch2 existence")?
else {
return Ok(false);
};
// Open the security arch protocol.
let mut arch_protocol =
uefi::boot::open_protocol_exclusive::<SecurityArchProtocol>(hook_arch)
.context("unable to open security arch protocol")?;
// Open the security arch2 protocol.
let mut arch_protocol2 =
uefi::boot::open_protocol_exclusive::<SecurityArch2Protocol>(hook_arch2)
.context("unable to open security arch2 protocol")?;
// Construct the global state to store.
let state = SecurityHookState {
original_hook: SecurityArchProtocol {
file_authentication_state: arch_protocol.file_authentication_state,
},
original_hook2: SecurityArch2Protocol {
file_authentication: arch_protocol2.file_authentication,
},
};
// Acquire the lock to the global state and replace it.
let mut global_state = GLOBAL_HOOK_STATE.lock();
global_state.replace(state);
// Install the hooks into the UEFI stack.
arch_protocol.file_authentication_state = Self::arch_file_authentication_state;
arch_protocol2.file_authentication = Self::arch2_file_authentication;
Ok(true)
}
/// Uninstalls the global security hook, if installed.
pub fn uninstall() -> Result<()> {
// Find the security arch protocol. If we can't find it, we will do nothing.
let Some(hook_arch) = crate::handle::find_handle(&SECURITY_ARCH_GUID)
.context("unable to check security arch existence")?
else {
return Ok(());
};
// Find the security arch2 protocol. If we can't find it, we will do nothing.
let Some(hook_arch2) = crate::handle::find_handle(&SECURITY_ARCH2_GUID)
.context("unable to check security arch2 existence")?
else {
return Ok(());
};
// Open the security arch protocol.
let mut arch_protocol =
uefi::boot::open_protocol_exclusive::<SecurityArchProtocol>(hook_arch)
.context("unable to open security arch protocol")?;
// Open the security arch2 protocol.
let mut arch_protocol2 =
uefi::boot::open_protocol_exclusive::<SecurityArch2Protocol>(hook_arch2)
.context("unable to open security arch2 protocol")?;
// Acquire the lock to the global state.
let mut global_state = GLOBAL_HOOK_STATE.lock();
// Take the state and replace the original functions.
let Some(state) = global_state.take() else {
return Ok(());
};
// Reinstall the original functions.
arch_protocol.file_authentication_state = state.original_hook.file_authentication_state;
arch_protocol2.file_authentication = state.original_hook2.file_authentication;
Ok(())
}
}

View File

@@ -0,0 +1,22 @@
use alloc::vec::Vec;
use anyhow::{Context, Result, bail};
use uefi::CString16;
/// Convert a byte slice into a CString16.
pub fn utf16_bytes_to_cstring16(bytes: &[u8]) -> Result<CString16> {
// Validate the input bytes are the right length.
if !bytes.len().is_multiple_of(2) {
bail!("utf16 bytes must be a multiple of 2");
}
// Convert the bytes to UTF-16 data.
let data = bytes
// Chunk everything into two bytes.
.chunks_exact(2)
// Reinterpret the bytes as u16 little-endian.
.map(|chunk| u16::from_le_bytes([chunk[0], chunk[1]]))
// Collect the result into a vector.
.collect::<Vec<_>>();
CString16::try_from(data).context("unable to convert utf16 bytes to CString16")
}

View File

@@ -0,0 +1,157 @@
use crate::strings;
use alloc::format;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::{Context, Result};
use log::warn;
use uefi::{CString16, guid};
use uefi_raw::Status;
use uefi_raw::table::runtime::{VariableAttributes, VariableVendor};
/// The classification of a variable.
/// This is an abstraction over various variable attributes.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum VariableClass {
/// The variable is available in Boot Services and Runtime Services and is not persistent.
BootAndRuntimeTemporary,
}
impl VariableClass {
/// The [VariableAttributes] for this classification.
fn attributes(&self) -> VariableAttributes {
match self {
VariableClass::BootAndRuntimeTemporary => {
VariableAttributes::BOOTSERVICE_ACCESS | VariableAttributes::RUNTIME_ACCESS
}
}
}
}
/// Provides access to a particular set of vendor variables.
pub struct VariableController {
/// The GUID of the vendor.
vendor: VariableVendor,
}
impl VariableController {
/// Global variables.
pub const GLOBAL: VariableController = VariableController::new(VariableVendor(guid!(
"8be4df61-93ca-11d2-aa0d-00e098032b8c"
)));
/// Create a new [VariableController] for the `vendor`.
pub const fn new(vendor: VariableVendor) -> Self {
Self { vendor }
}
/// Convert `key` to a variable name as a CString16.
fn name(key: &str) -> Result<CString16> {
CString16::try_from(key).context("unable to convert variable name to CString16")
}
/// Retrieve the cstr16 value specified by the `key`.
/// Returns None if the value isn't set.
/// If the value is not decodable, we will return None and log a warning.
pub fn get_cstr16(&self, key: &str) -> Result<Option<String>> {
let name = Self::name(key)?;
// Retrieve the variable data, handling variable not existing as None.
match uefi::runtime::get_variable_boxed(&name, &self.vendor) {
Ok((data, _)) => {
// Try to decode UTF-16 bytes to a CString16.
match strings::utf16_bytes_to_cstring16(&data) {
Ok(value) => {
// We have a value, so return the UTF-8 value.
Ok(Some(value.to_string()))
}
Err(error) => {
// We encountered an error, so warn and return None.
warn!("efi variable '{}' is not valid UTF-16: {}", key, error);
Ok(None)
}
}
}
Err(error) => {
// If the variable does not exist, we will return None.
if error.status() == Status::NOT_FOUND {
Ok(None)
} else {
Err(error).with_context(|| format!("unable to get efi variable {}", key))
}
}
}
}
/// Retrieve a boolean value specified by the `key`.
pub fn get_bool(&self, key: &str) -> Result<bool> {
let name = Self::name(key)?;
// Retrieve the variable data, handling variable not existing as false.
match uefi::runtime::get_variable_boxed(&name, &self.vendor) {
Ok((data, _)) => {
// If the variable is zero-length, we treat it as false.
if data.is_empty() {
Ok(false)
} else {
// We treat the variable as true if the first byte is non-zero.
Ok(data[0] > 0)
}
}
Err(error) => {
// If the variable does not exist, we treat it as false.
if error.status() == Status::NOT_FOUND {
Ok(false)
} else {
Err(error).with_context(|| format!("unable to get efi variable {}", key))
}
}
}
}
/// Set a variable specified by `key` to `value`.
/// The variable `class` controls the attributes for the variable.
pub fn set(&self, key: &str, value: &[u8], class: VariableClass) -> Result<()> {
let name = Self::name(key)?;
uefi::runtime::set_variable(&name, &self.vendor, class.attributes(), value)
.with_context(|| format!("unable to set efi variable {}", key))?;
Ok(())
}
/// Set a variable specified by `key` to `value`, converting the value to
/// a [CString16]. The variable `class` controls the attributes for the variable.
pub fn set_cstr16(&self, key: &str, value: &str, class: VariableClass) -> Result<()> {
// Encode the value as a CString16 little endian.
let mut encoded = value
.encode_utf16()
.flat_map(|c| c.to_le_bytes())
.collect::<Vec<u8>>();
// Add a null terminator to the end of the value.
encoded.extend_from_slice(&[0, 0]);
self.set(key, &encoded, class)
}
/// Set a boolean variable specified by `key` to `value`, converting the value.
/// The variable `class` controls the attributes for the variable.
pub fn set_bool(&self, key: &str, value: bool, class: VariableClass) -> Result<()> {
self.set(key, &[value as u8], class)
}
/// Set the u64 little-endian variable specified by `key` to `value`.
/// The variable `class` controls the attributes for the variable.
pub fn set_u64le(&self, key: &str, value: u64, class: VariableClass) -> Result<()> {
self.set(key, &value.to_le_bytes(), class)
}
/// Remove the variable specified by `key`.
/// This can fail if the variable is not set.
pub fn remove(&self, key: &str) -> Result<()> {
let name = Self::name(key)?;
// Delete the variable from UEFI.
uefi::runtime::delete_variable(&name, &self.vendor)
.with_context(|| format!("unable to remove efi variable {}", key))
}
}