chore(code): move sprout code to crates/sprout and remove splash support for minimalism

This commit is contained in:
2025-11-02 22:23:00 -05:00
parent b103fdacf2
commit 9c12e5f12f
52 changed files with 43 additions and 354 deletions

33
crates/sprout/Cargo.toml Normal file
View File

@@ -0,0 +1,33 @@
[package]
name = "edera-sprout"
description = "Modern UEFI bootloader"
license = "Apache-2.0"
version = "0.0.17"
homepage = "https://sprout.edera.dev"
repository = "https://github.com/edera-dev/sprout"
edition = "2024"
[dependencies]
anyhow = "1.0.100"
bitflags = "2.10.0"
toml = "0.9.8"
log = "0.4.28"
[dependencies.serde]
version = "1.0.228"
features = ["derive"]
[dependencies.sha256]
version = "1.6.0"
default-features = false
[dependencies.uefi]
version = "0.36.0"
features = ["alloc", "logger"]
[dependencies.uefi-raw]
version = "0.12.0"
[[bin]]
name = "sprout"
path = "src/main.rs"

3
crates/sprout/README.md Normal file
View File

@@ -0,0 +1,3 @@
# Sprout Bootloader
The main bootable crate of the Sprout bootloader.

57
crates/sprout/build.rs Normal file
View File

@@ -0,0 +1,57 @@
use std::path::PathBuf;
use std::{env, fs};
/// The size of the sbat.csv file.
const SBAT_SIZE: usize = 512;
/// Generate the sbat.csv for the .sbat link section.
///
/// We intake a sbat.template.tsv and output a sbat.csv which is included by src/sbat.rs
fn generate_sbat_csv() {
// Notify Cargo that if the Sprout version changes, we need to regenerate the sbat.csv.
println!("cargo:rerun-if-env-changed=CARGO_PKG_VERSION");
// The version of the sprout crate.
let sprout_version = env::var("CARGO_PKG_VERSION").expect("CARGO_PKG_VERSION not set");
// The output directory to place the sbat.csv into.
let output_dir = PathBuf::from(env::var("OUT_DIR").expect("OUT_DIR not set"));
// The output path to the sbat.csv.
let output_file = output_dir.join("sbat.csv");
// The path to the root of the sprout crate.
let sprout_root =
PathBuf::from(env::var("CARGO_MANIFEST_DIR").expect("CARGO_MANIFEST_DIR not set"));
// The path to the sbat.template.tsv file is in the source directory of the sprout crate.
let template_path = sprout_root.join("src/sbat.template.csv");
// Read the sbat.csv template file.
let template = fs::read_to_string(&template_path).expect("unable to read template file");
// Replace the version placeholder in the template with the actual version.
let sbat = template.replace("{version}", &sprout_version);
// Encode the sbat.csv as bytes.
let mut encoded = sbat.as_bytes().to_vec();
if encoded.len() > SBAT_SIZE {
panic!("sbat.csv is too large");
}
// Pad the sbat.csv to the required size.
while encoded.len() < SBAT_SIZE {
encoded.push(0);
}
// Write the sbat.csv to the output directory.
fs::write(&output_file, encoded).expect("unable to write sbat.csv");
}
/// Build script entry point.
/// Right now, all we need to do is generate the sbat.csv file.
fn main() {
// Generate the sbat.csv file.
generate_sbat_csv();
}

View File

@@ -0,0 +1,65 @@
use crate::context::SproutContext;
use anyhow::{Context, Result, bail};
use serde::{Deserialize, Serialize};
use std::rc::Rc;
/// EFI chainloader action.
pub mod chainload;
/// Edera hypervisor action.
pub mod edera;
/// EFI console print action.
pub mod print;
/// Declares an action that sprout can execute.
/// Actions allow configuring sprout's internal runtime mechanisms with values
/// that you can specify via other concepts.
///
/// Actions are the main work that Sprout gets done, like booting Linux.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct ActionDeclaration {
/// Chainload to another EFI application.
/// This allows you to load any EFI application, either to boot an operating system
/// or to perform more EFI actions and return to sprout.
#[serde(default)]
pub chainload: Option<chainload::ChainloadConfiguration>,
/// Print a string to the EFI console.
#[serde(default)]
pub print: Option<print::PrintConfiguration>,
/// Boot the Edera hypervisor and the root operating system.
/// This action is an extension on top of the Xen EFI stub that
/// is specific to Edera.
#[serde(default, rename = "edera")]
pub edera: Option<edera::EderaConfiguration>,
}
/// Execute the action specified by `name` which should be stored in the
/// root context of the provided `context`. This function may not return
/// if the provided action executes an operating system or an EFI application
/// that does not return control to sprout.
pub fn execute(context: Rc<SproutContext>, name: impl AsRef<str>) -> Result<()> {
// Retrieve the action from the root context.
let Some(action) = context.root().actions().get(name.as_ref()) else {
bail!("unknown action '{}'", name.as_ref());
};
// Finalize the context and freeze it.
let context = context
.finalize()
.context("unable to finalize context")?
.freeze();
// Execute the action.
if let Some(chainload) = &action.chainload {
chainload::chainload(context.clone(), chainload)?;
return Ok(());
} else if let Some(print) = &action.print {
print::print(context.clone(), print)?;
return Ok(());
} else if let Some(edera) = &action.edera {
edera::edera(context.clone(), edera)?;
return Ok(());
}
// If we reach here, we don't know how to execute the action that was configured.
// This is likely unreachable, but we should still return an error just in case.
bail!("unknown action configuration");
}

View File

@@ -0,0 +1,122 @@
use crate::context::SproutContext;
use crate::integrations::bootloader_interface::BootloaderInterface;
use crate::integrations::shim::{ShimInput, ShimSupport};
use crate::utils;
use crate::utils::media_loader::MediaLoaderHandle;
use crate::utils::media_loader::constants::linux::LINUX_EFI_INITRD_MEDIA_GUID;
use anyhow::{Context, Result, bail};
use log::error;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
use uefi::CString16;
use uefi::proto::loaded_image::LoadedImage;
/// The configuration of the chainload action.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct ChainloadConfiguration {
/// The path to the image to chainload.
/// This can be a Linux EFI stub (vmlinuz usually) or a standard EFI executable.
pub path: String,
/// The options to pass to the image.
/// The options are concatenated by a space and then passed to the EFI application.
#[serde(default)]
pub options: Vec<String>,
/// An optional path to a Linux initrd.
/// This uses the [LINUX_EFI_INITRD_MEDIA_GUID] mechanism to load the initrd into the EFI stack.
/// For Linux, you can also use initrd=\path\to\initrd as an option, but this option is
/// generally better and safer as it can support additional load options in the future.
#[serde(default, rename = "linux-initrd")]
pub linux_initrd: Option<String>,
}
/// Executes the chainload action using the specified `configuration` inside the provided `context`.
pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfiguration) -> Result<()> {
// Retrieve the current image handle of sprout.
let sprout_image = uefi::boot::image_handle();
// Resolve the path to the image to chainload.
let resolved = utils::resolve_path(
Some(context.root().loaded_image_path()?),
&context.stamp(&configuration.path),
)
.context("unable to resolve chainload path")?;
// Load the image to chainload using the shim support integration.
// It will determine if the image needs to be loaded via the shim or can be loaded directly.
let image = ShimSupport::load(sprout_image, ShimInput::ResolvedPath(&resolved))?;
// Open the LoadedImage protocol of the image to chainload.
let mut loaded_image_protocol = uefi::boot::open_protocol_exclusive::<LoadedImage>(image)
.context("unable to open loaded image protocol")?;
// Stamp and combine the options to pass to the image.
let options =
utils::combine_options(configuration.options.iter().map(|item| context.stamp(item)));
// Pass the load options to the image.
// If no options are provided, the resulting string will be empty.
// The options are pinned and boxed to ensure that they are valid for the lifetime of this
// function, which ensures the lifetime of the options for the image runtime.
let options = Box::pin(
CString16::try_from(&options[..])
.context("unable to convert chainloader options to CString16")?,
);
if options.num_bytes() > u32::MAX as usize {
bail!("chainloader options too large");
}
// SAFETY: option size is checked to validate it is safe to pass.
// Additionally, the pointer is allocated and retained on heap, which makes
// passing the `options` pointer safe to the next image.
unsafe {
loaded_image_protocol
.set_load_options(options.as_ptr() as *const u8, options.num_bytes() as u32);
}
// Stamp the initrd path, if provided.
let initrd = configuration
.linux_initrd
.as_ref()
.map(|item| context.stamp(item));
// The initrd can be None or empty, so we need to collapse that into a single Option.
let initrd = utils::empty_is_none(initrd);
// If an initrd is provided, register it with the EFI stack.
let mut initrd_handle = None;
if let Some(linux_initrd) = initrd {
let content =
utils::read_file_contents(Some(context.root().loaded_image_path()?), &linux_initrd)
.context("unable to read linux initrd")?;
let handle =
MediaLoaderHandle::register(LINUX_EFI_INITRD_MEDIA_GUID, content.into_boxed_slice())
.context("unable to register linux initrd")?;
initrd_handle = Some(handle);
}
// Mark execution of an entry in the bootloader interface.
BootloaderInterface::mark_exec(context.root().timer())
.context("unable to mark execution of boot entry in bootloader interface")?;
// Start the loaded image.
// This call might return, or it may pass full control to another image that will never return.
// Capture the result to ensure we can return an error if the image fails to start, but only
// after the optional initrd has been unregistered.
let result = uefi::boot::start_image(image);
// Unregister the initrd if it was registered.
if let Some(initrd_handle) = initrd_handle
&& let Err(error) = initrd_handle.unregister()
{
error!("unable to unregister linux initrd: {}", error);
}
// Assert there was no error starting the image.
result.context("unable to start image")?;
// Explicitly drop the options to clarify the lifetime.
drop(options);
// Return control to sprout.
Ok(())
}

View File

@@ -0,0 +1,158 @@
use std::rc::Rc;
use anyhow::{Context, Result};
use log::error;
use serde::{Deserialize, Serialize};
use uefi::Guid;
use crate::{
actions::{self, chainload::ChainloadConfiguration},
context::SproutContext,
utils::{
self,
media_loader::{
MediaLoaderHandle,
constants::xen::{
XEN_EFI_CONFIG_MEDIA_GUID, XEN_EFI_KERNEL_MEDIA_GUID, XEN_EFI_RAMDISK_MEDIA_GUID,
},
},
},
};
/// The configuration of the edera action which boots the Edera hypervisor.
/// Edera is based on Xen but modified significantly with a Rust stack.
/// Sprout is a component of the Edera stack and provides the boot functionality of Xen.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct EderaConfiguration {
/// The path to the Xen hypervisor EFI image.
pub xen: String,
/// The path to the kernel to boot for dom0.
pub kernel: String,
/// The path to the initrd to load for dom0.
#[serde(default)]
pub initrd: Option<String>,
/// The options to pass to the kernel.
#[serde(default, rename = "kernel-options")]
pub kernel_options: Vec<String>,
/// The options to pass to the Xen hypervisor.
#[serde(default, rename = "xen-options")]
pub xen_options: Vec<String>,
}
/// Builds a configuration string for the Xen EFI stub using the specified `configuration`.
fn build_xen_config(context: Rc<SproutContext>, configuration: &EderaConfiguration) -> String {
// Stamp xen options and combine them.
let xen_options = utils::combine_options(
configuration
.xen_options
.iter()
.map(|item| context.stamp(item)),
);
// Stamp kernel options and combine them.
let kernel_options = utils::combine_options(
configuration
.kernel_options
.iter()
.map(|item| context.stamp(item)),
);
// xen config file format is ini-like
[
// global section
"[global]".to_string(),
// default configuration section
"default=sprout".to_string(),
// configuration section for sprout
"[sprout]".to_string(),
// xen options
format!("options={}", xen_options),
// kernel options, stub replaces the kernel path
// the kernel is provided via media loader
format!("kernel=stub {}", kernel_options),
// required or else the last line will be ignored
"".to_string(),
]
.join("\n")
}
/// Register a media loader for some `text` with the vendor `guid`.
/// `what` should indicate some identifying value for error messages
/// like `config` or `kernel`.
/// Provides a [MediaLoaderHandle] that can be used to unregister the media loader.
fn register_media_loader_text(guid: Guid, what: &str, text: String) -> Result<MediaLoaderHandle> {
MediaLoaderHandle::register(guid, text.as_bytes().to_vec().into_boxed_slice())
.context(format!("unable to register {} media loader", what)) /* */
}
/// Register a media loader for the file `path` with the vendor `guid`.
/// `what` should indicate some identifying value for error messages
/// like `config` or `kernel`.
/// Provides a [MediaLoaderHandle] that can be used to unregister the media loader.
fn register_media_loader_file(
context: &Rc<SproutContext>,
guid: Guid,
what: &str,
path: &str,
) -> Result<MediaLoaderHandle> {
// Stamp the path to the file.
let path = context.stamp(path);
// Read the file contents.
let content = utils::read_file_contents(Some(context.root().loaded_image_path()?), &path)
.context(format!("unable to read {} file", what))?;
// Register the media loader.
let handle = MediaLoaderHandle::register(guid, content.into_boxed_slice())
.context(format!("unable to register {} media loader", what))?;
Ok(handle)
}
/// Executes the edera action which will boot the Edera hypervisor with the specified
/// `configuration` and `context`. This action uses Edera-specific Xen EFI stub functionality.
pub fn edera(context: Rc<SproutContext>, configuration: &EderaConfiguration) -> Result<()> {
// Build the Xen config file content for this configuration.
let config = build_xen_config(context.clone(), configuration);
// Register the media loader for the config.
let config = register_media_loader_text(XEN_EFI_CONFIG_MEDIA_GUID, "config", config)
.context("unable to register config media loader")?;
// Register the media loaders for the kernel.
let kernel = register_media_loader_file(
&context,
XEN_EFI_KERNEL_MEDIA_GUID,
"kernel",
&configuration.kernel,
)
.context("unable to register kernel media loader")?;
// Create a vector of media loaders to unregister on error.
let mut media_loaders = vec![config, kernel];
// Register the initrd if it is provided.
if let Some(initrd) = utils::empty_is_none(configuration.initrd.as_ref()) {
let initrd =
register_media_loader_file(&context, XEN_EFI_RAMDISK_MEDIA_GUID, "initrd", initrd)
.context("unable to register initrd media loader")?;
media_loaders.push(initrd);
}
// Chainload to the Xen EFI stub.
let result = actions::chainload::chainload(
context.clone(),
&ChainloadConfiguration {
path: configuration.xen.clone(),
options: vec![],
linux_initrd: None,
},
)
.context("unable to chainload to xen");
// Unregister the media loaders when an error happens.
for media_loader in media_loaders {
if let Err(error) = media_loader.unregister() {
error!("unable to unregister media loader: {}", error);
}
}
result
}

View File

@@ -0,0 +1,19 @@
use crate::context::SproutContext;
use anyhow::Result;
use log::info;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
/// The configuration of the print action.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct PrintConfiguration {
/// The text to print to the console.
#[serde(default)]
pub text: String,
}
/// Executes the print action with the specified `configuration` inside the provided `context`.
pub fn print(context: Rc<SproutContext>, configuration: &PrintConfiguration) -> Result<()> {
info!("{}", context.stamp(&configuration.text));
Ok(())
}

View File

@@ -0,0 +1,57 @@
use crate::config::RootConfiguration;
use anyhow::{Context, Result};
use uefi::fs::FileSystem;
use uefi::proto::device_path::DevicePath;
use uefi::proto::media::fs::SimpleFileSystem;
/// bls: autodetect and configure BLS-enabled filesystems.
pub mod bls;
/// linux: autodetect and configure Linux kernels.
/// This autoconfiguration module should not be activated
/// on BLS-enabled filesystems as it may make duplicate entries.
pub mod linux;
/// windows: autodetect and configure Windows boot configurations.
pub mod windows;
/// Generate a [RootConfiguration] based on the environment.
/// Intakes a `config` to use as the basis of the autoconfiguration.
pub fn autoconfigure(config: &mut RootConfiguration) -> Result<()> {
// Find all the filesystems that are on the system.
let filesystem_handles =
uefi::boot::find_handles::<SimpleFileSystem>().context("unable to scan filesystems")?;
// For each filesystem that was detected, scan it for supported autoconfig mechanisms.
for handle in filesystem_handles {
// Acquire the device path root for the filesystem.
let root = {
uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to get root for filesystem")?
.to_boxed()
};
// Open the filesystem that was detected.
let filesystem = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(handle)
.context("unable to open filesystem")?;
// Trade the filesystem protocol for the uefi filesystem helper.
let mut filesystem = FileSystem::new(filesystem);
// Scan the filesystem for BLS supported configurations.
let bls_found = bls::scan(&mut filesystem, &root, config)
.context("unable to scan for bls configurations")?;
// If BLS was not found, scan for Linux configurations.
if !bls_found {
linux::scan(&mut filesystem, &root, config)
.context("unable to scan for linux configurations")?;
}
// Always look for Windows configurations.
windows::scan(&mut filesystem, &root, config)
.context("unable to scan for windows configurations")?;
}
Ok(())
}

View File

@@ -0,0 +1,101 @@
use crate::actions::ActionDeclaration;
use crate::actions::chainload::ChainloadConfiguration;
use crate::config::RootConfiguration;
use crate::entries::EntryDeclaration;
use crate::generators::GeneratorDeclaration;
use crate::generators::bls::BlsConfiguration;
use crate::utils;
use anyhow::{Context, Result};
use uefi::cstr16;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the BLS chainload action that will be used
/// by the BLS generator to chainload entries.
const BLS_CHAINLOAD_ACTION_PREFIX: &str = "bls-chainload-";
/// Scan the specified `filesystem` for BLS configurations.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
// BLS has a loader.conf file that can specify its own auto-entries mechanism.
let bls_loader_conf_path = Path::new(cstr16!("\\loader\\loader.conf"));
// BLS also has an entries directory that can specify explicit entries.
let bls_entries_path = Path::new(cstr16!("\\loader\\entries"));
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Whether we have a loader.conf file.
let has_loader_conf = filesystem
.try_exists(bls_loader_conf_path)
.context("unable to check for BLS loader.conf file")?;
// Whether we have an entries directory.
// We actually iterate the entries to see if there are any.
let has_entries_dir = filesystem
.read_dir(bls_entries_path)
.ok()
.and_then(|mut iterator| iterator.next())
.map(|entry| entry.is_ok())
.unwrap_or(false);
// Detect if a BLS supported configuration is on this filesystem.
// We check both loader.conf and entries directory as only one of them is required.
if !(has_loader_conf || has_entries_dir) {
return Ok(false);
}
// Generate a unique name for the BLS chainload action.
let chainload_action_name = format!("{}{}", BLS_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// BLS is now detected, generate a configuration for it.
let generator = BlsConfiguration {
entry: EntryDeclaration {
title: "$title".to_string(),
actions: vec![chainload_action_name.clone()],
..Default::default()
},
path: format!("{}\\loader", root),
};
// Generate a unique name for the BLS generator and insert the generator into the configuration.
config.generators.insert(
format!("auto-bls-{}", root_unique_hash),
GeneratorDeclaration {
bls: Some(generator),
..Default::default()
},
);
// Generate a chainload configuration for BLS.
// BLS will provide these values to us.
let chainload = ChainloadConfiguration {
path: format!("{}\\$chainload", root),
options: vec!["$options".to_string()],
linux_initrd: Some(format!("{}\\$initrd", root)),
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We had a BLS supported configuration, so return true.
Ok(true)
}

View File

@@ -0,0 +1,254 @@
use crate::actions::ActionDeclaration;
use crate::actions::chainload::ChainloadConfiguration;
use crate::config::RootConfiguration;
use crate::entries::EntryDeclaration;
use crate::generators::GeneratorDeclaration;
use crate::generators::list::ListConfiguration;
use crate::utils;
use crate::utils::vercmp;
use anyhow::{Context, Result};
use std::collections::BTreeMap;
use uefi::CString16;
use uefi::fs::{FileSystem, Path, PathBuf};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the Linux chainload action that will be used to boot Linux.
const LINUX_CHAINLOAD_ACTION_PREFIX: &str = "linux-chainload-";
/// The locations to scan for kernel pairs.
/// We will check for symlinks and if this directory is a symlink, we will skip it.
/// The empty string represents the root of the filesystem.
const SCAN_LOCATIONS: &[&str] = &["\\boot", "\\"];
/// Prefixes of kernel files to scan for.
const KERNEL_PREFIXES: &[&str] = &["vmlinuz"];
/// Prefixes of initramfs files to match to.
const INITRAMFS_PREFIXES: &[&str] = &["initramfs", "initrd", "initrd.img"];
/// This is really silly, but if what we are booting is the Canonical stubble stub,
/// there is a chance it will assert that the load options are non-empty.
/// Technically speaking, load options can be empty. However, it assumes load options
/// have something in it. Canonical's stubble copied code from systemd that does this
/// and then uses that code improperly by asserting that the pointer is non-null.
/// To give a good user experience, we place a placeholder value here to ensure it's non-empty.
/// For stubble, this code ensures the command line pointer becomes null:
/// https://github.com/ubuntu/stubble/blob/e56643979addfb98982266018e08921c07424a0c/stub.c#L61-L64
/// Then this code asserts on it, stopping the boot process:
/// https://github.com/ubuntu/stubble/blob/e56643979addfb98982266018e08921c07424a0c/stub.c#L27
const DEFAULT_LINUX_OPTIONS: &str = "placeholder";
/// Pair of kernel and initramfs.
/// This is what scanning a directory is meant to find.
struct KernelPair {
/// The path to a kernel.
kernel: String,
/// The path to an initramfs, if any.
initramfs: Option<String>,
}
/// Scan the specified `filesystem` at `path` for [KernelPair] results.
fn scan_directory(filesystem: &mut FileSystem, path: &str) -> Result<Vec<KernelPair>> {
// All the discovered kernel pairs.
let mut pairs = Vec::new();
// We have to special-case the root directory due to path logic in the uefi crate.
let is_root = path.is_empty() || path == "\\";
// Construct a filesystem path from the path string.
let path = CString16::try_from(path).context("unable to convert path to CString16")?;
let path = Path::new(&path);
let path = path.to_path_buf();
// Check if the path exists and is a directory.
let exists = filesystem
.metadata(&path)
.ok()
.map(|metadata| metadata.is_directory())
.unwrap_or(false);
// If the path does not exist, return an empty list.
if !exists {
return Ok(pairs);
}
// Open a directory iterator on the path to scan.
// Ignore errors here as in some scenarios this might fail due to symlinks.
let Some(directory) = filesystem.read_dir(&path).ok() else {
return Ok(pairs);
};
// Create a new path used for joining file names below.
// All attempts to derive paths for the files in the directory should use this instead.
// The uefi crate does not handle push correctly for the root directory.
// It will add a second slash, which will cause our path logic to fail.
let path_for_join = if is_root {
PathBuf::new()
} else {
path.clone()
};
// For each item in the directory, find a kernel.
for item in directory {
let item = item.context("unable to read directory item")?;
// Skip over any items that are not regular files.
if !item.is_regular_file() {
continue;
}
// Convert the name from a CString16 to a String.
let name = item.file_name().to_string();
// Convert the name to lowercase to make all of this case-insensitive.
let name_for_match = name.to_lowercase();
// Find a kernel prefix that matches, if any.
// This is case-insensitive to ensure we pick up all possibilities.
let Some(prefix) = KERNEL_PREFIXES.iter().find(|prefix| {
name_for_match == **prefix || name_for_match.starts_with(&format!("{}-", prefix))
}) else {
// Skip over anything that doesn't match a kernel prefix.
continue;
};
// Acquire the suffix of the name, this will be used to match an initramfs.
let suffix = &name[prefix.len()..];
// Find a matching initramfs, if any.
let mut initramfs_prefix_iter = INITRAMFS_PREFIXES.iter();
let matched_initramfs_path = loop {
let Some(prefix) = initramfs_prefix_iter.next() else {
break None;
};
// Construct an initramfs path.
let initramfs = format!("{}{}", prefix, suffix);
let initramfs = CString16::try_from(initramfs.as_str())
.context("unable to convert initramfs name to CString16")?;
let mut initramfs_path = path_for_join.clone();
initramfs_path.push(Path::new(&initramfs));
// Check if the initramfs path exists, if it does, break out of the loop.
if filesystem
.try_exists(&initramfs_path)
.context("unable to check if initramfs path exists")?
{
break Some(initramfs_path);
}
};
// Construct a kernel path from the kernel name.
let mut kernel = path_for_join.clone();
kernel.push(Path::new(&item.file_name()));
let kernel = kernel.to_string();
let initramfs = matched_initramfs_path.map(|initramfs_path| initramfs_path.to_string());
// Produce a kernel pair.
let pair = KernelPair { kernel, initramfs };
pairs.push(pair);
}
Ok(pairs)
}
/// Scan the specified `filesystem` for Linux kernels and matching initramfs.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
let mut pairs = Vec::new();
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Scan all locations for kernel pairs, adding them to the list.
for location in SCAN_LOCATIONS {
let scanned = scan_directory(filesystem, location)
.with_context(|| format!("unable to scan directory {}", location))?;
pairs.extend(scanned);
}
// If no kernel pairs were found, return false.
if pairs.is_empty() {
return Ok(false);
}
// Sort the kernel pairs by kernel version, if it has one, newer kernels first.
pairs.sort_by(|a, b| vercmp::compare_versions(&a.kernel, &b.kernel).reverse());
// Generate a unique name for the linux chainload action.
let chainload_action_name = format!("{}{}", LINUX_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// Kernel pairs are detected, generate a list configuration for it.
let generator = ListConfiguration {
entry: EntryDeclaration {
title: "Boot Linux $name".to_string(),
actions: vec![chainload_action_name.clone()],
..Default::default()
},
values: pairs
.into_iter()
.map(|pair| {
BTreeMap::from_iter(vec![
("name".to_string(), pair.kernel.clone()),
("kernel".to_string(), format!("{}{}", root, pair.kernel)),
(
"initrd".to_string(),
pair.initramfs
.map(|initramfs| format!("{}{}", root, initramfs))
.unwrap_or_default(),
),
])
})
.collect(),
};
// Generate a unique name for the Linux generator and insert the generator into the configuration.
config.generators.insert(
format!("auto-linux-{}", root_unique_hash),
GeneratorDeclaration {
list: Some(generator),
..Default::default()
},
);
// Insert a default value for the linux-options if it doesn't exist.
if !config.values.contains_key("linux-options") {
config.values.insert(
"linux-options".to_string(),
DEFAULT_LINUX_OPTIONS.to_string(),
);
}
// Generate a chainload configuration for the list generator.
// The list will provide these values to us.
// Note that we don't need an extra \\ in the paths here.
// The root already contains a trailing slash.
let chainload = ChainloadConfiguration {
path: "$kernel".to_string(),
options: vec!["$linux-options".to_string()],
linux_initrd: Some("$initrd".to_string()),
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We had a Linux kernel, so return true to indicate something was found.
Ok(true)
}

View File

@@ -0,0 +1,80 @@
use crate::actions::ActionDeclaration;
use crate::actions::chainload::ChainloadConfiguration;
use crate::config::RootConfiguration;
use crate::entries::EntryDeclaration;
use crate::utils;
use anyhow::{Context, Result};
use uefi::CString16;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the Windows chainload action that will be used to boot Windows.
const WINDOWS_CHAINLOAD_ACTION_PREFIX: &str = "windows-chainload-";
/// Windows boot manager path.
const BOOTMGR_FW_PATH: &str = "\\EFI\\Microsoft\\Boot\\bootmgfw.efi";
/// Scan the specified `filesystem` for Windows configurations.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
// Convert the boot manager firmware path to a path.
let bootmgr_fw_path =
CString16::try_from(BOOTMGR_FW_PATH).context("unable to convert path to CString16")?;
let bootmgr_fw_path = Path::new(&bootmgr_fw_path);
// Check if the boot manager firmware path exists, if it doesn't, return false.
if !filesystem
.try_exists(bootmgr_fw_path)
.context("unable to check if bootmgr firmware path exists")?
{
return Ok(false);
}
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Generate a unique name for the Windows chainload action.
let chainload_action_name = format!("{}{}", WINDOWS_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// Generate an entry name for Windows.
let entry_name = format!("auto-windows-{}", root_unique_hash,);
// Create an entry for Windows and insert it into the configuration.
let entry = EntryDeclaration {
title: "Boot Windows".to_string(),
actions: vec![chainload_action_name.clone()],
values: Default::default(),
};
config.entries.insert(entry_name, entry);
// Generate a chainload configuration for Windows.
let chainload = ChainloadConfiguration {
path: format!("{}{}", root, bootmgr_fw_path),
options: vec![],
..Default::default()
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We have a Windows boot entry, so return true to indicate something was found.
Ok(true)
}

View File

@@ -0,0 +1,89 @@
use crate::actions::ActionDeclaration;
use crate::drivers::DriverDeclaration;
use crate::entries::EntryDeclaration;
use crate::extractors::ExtractorDeclaration;
use crate::generators::GeneratorDeclaration;
use crate::phases::PhasesConfiguration;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
/// The configuration loader mechanisms.
pub mod loader;
/// This is the latest version of the sprout configuration format.
/// This must be incremented when the configuration breaks compatibility.
pub const LATEST_VERSION: u32 = 1;
/// The default timeout for the boot menu in seconds.
pub const DEFAULT_MENU_TIMEOUT_SECONDS: u64 = 10;
/// The Sprout configuration format.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct RootConfiguration {
/// The version of the configuration. This should always be declared
/// and be the latest version that is supported. If not specified, it is assumed
/// the configuration is the latest version.
#[serde(default = "latest_version")]
pub version: u32,
/// Default options for Sprout.
#[serde(default)]
pub options: OptionsConfiguration,
/// Values to be inserted into the root sprout context.
#[serde(default)]
pub values: BTreeMap<String, String>,
/// Drivers to load.
/// These drivers provide extra functionality like filesystem support to Sprout.
/// Each driver has a name which uniquely identifies it inside Sprout.
#[serde(default)]
pub drivers: BTreeMap<String, DriverDeclaration>,
/// Declares the extractors that add values to the sprout context that are calculated
/// at runtime. Each extractor has a name which corresponds to the value it will set
/// inside the sprout context.
#[serde(default)]
pub extractors: BTreeMap<String, ExtractorDeclaration>,
/// Declares the actions that can execute operations for sprout.
/// Actions are executable modules in sprout that take in specific structured values.
/// Actions are responsible for ensuring that passed strings are stamped to replace values
/// at runtime.
/// Each action has a name that can be referenced by other base concepts like entries.
#[serde(default)]
pub actions: BTreeMap<String, ActionDeclaration>,
/// Declares the entries that are displayed on the boot menu. These entries are static
/// but can still use values from the sprout context.
#[serde(default)]
pub entries: BTreeMap<String, EntryDeclaration>,
/// Declares the generators that are used to generate entries at runtime.
/// Each generator has its own logic for generating entries, but generally they intake
/// a template entry and stamp that template entry over some values determined at runtime.
/// Each generator has an associated name used to differentiate it across sprout.
#[serde(default)]
pub generators: BTreeMap<String, GeneratorDeclaration>,
/// Configures the various phases of sprout. This allows you to hook into specific parts
/// of the boot process to execute actions, for example, you can show a boot splash during
/// the early phase.
#[serde(default)]
pub phases: PhasesConfiguration,
}
/// Options configuration for Sprout, used when the corresponding options are not specified.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct OptionsConfiguration {
/// The entry to boot without showing the boot menu.
/// If not specified, a boot menu is shown.
#[serde(rename = "default-entry", default)]
pub default_entry: Option<String>,
/// The timeout of the boot menu.
#[serde(rename = "menu-timeout", default = "default_menu_timeout")]
pub menu_timeout: u64,
/// Enables autoconfiguration of Sprout based on the environment.
#[serde(default)]
pub autoconfigure: bool,
}
fn latest_version() -> u32 {
LATEST_VERSION
}
fn default_menu_timeout() -> u64 {
DEFAULT_MENU_TIMEOUT_SECONDS
}

View File

@@ -0,0 +1,68 @@
use crate::config::{RootConfiguration, latest_version};
use crate::options::SproutOptions;
use crate::platform::tpm::PlatformTpm;
use crate::utils;
use anyhow::{Context, Result, bail};
use log::info;
use std::ops::Deref;
use toml::Value;
use uefi::proto::device_path::LoadedImageDevicePath;
/// Loads the raw configuration from the sprout config file as data.
fn load_raw_config(options: &SproutOptions) -> Result<Vec<u8>> {
// Open the LoadedImageDevicePath protocol to get the path to the current image.
let current_image_device_path_protocol =
uefi::boot::open_protocol_exclusive::<LoadedImageDevicePath>(uefi::boot::image_handle())
.context("unable to get loaded image device path")?;
// Acquire the device path as a boxed device path.
let path = current_image_device_path_protocol.deref().to_boxed();
info!("configuration file: {}", options.config);
// Read the contents of the sprout config file.
let content = utils::read_file_contents(Some(&path), &options.config)
.context("unable to read sprout config file")?;
// Measure the sprout.toml into the TPM, if needed and possible.
PlatformTpm::log_event(
PlatformTpm::PCR_BOOT_LOADER_CONFIG,
&content,
"sprout: configuration file",
)
.context("unable to measure the sprout.toml file into the TPM")?;
// Return the contents of the sprout config file.
Ok(content)
}
/// Loads the [RootConfiguration] for Sprout.
pub fn load(options: &SproutOptions) -> Result<RootConfiguration> {
// Load the raw configuration from the sprout config file.
let content = load_raw_config(options)?;
// Parse the raw configuration into a toml::Value which can represent any TOML file.
let value: Value = toml::from_slice(&content).context("unable to parse sprout config file")?;
// Check the version of the configuration without parsing the full configuration.
let version = value
.get("version")
.cloned()
.unwrap_or_else(|| Value::Integer(latest_version() as i64));
// Parse the version into an u32.
let version: u32 = version
.try_into()
.context("unable to get configuration version")?;
// Check if the version is supported.
if version != latest_version() {
bail!("unsupported configuration version: {}", version);
}
// If the version is supported, parse the full configuration.
let config: RootConfiguration = value
.try_into()
.context("unable to parse sprout.toml file")?;
// Return the parsed configuration.
Ok(config)
}

View File

@@ -0,0 +1,273 @@
use crate::actions::ActionDeclaration;
use crate::options::SproutOptions;
use crate::platform::timer::PlatformTimer;
use anyhow::anyhow;
use anyhow::{Result, bail};
use std::cmp::Reverse;
use std::collections::{BTreeMap, BTreeSet};
use std::rc::Rc;
use uefi::proto::device_path::DevicePath;
/// The maximum number of iterations that can be performed in [SproutContext::finalize].
const CONTEXT_FINALIZE_ITERATION_LIMIT: usize = 100;
/// Declares a root context for Sprout.
/// This contains data that needs to be shared across Sprout.
pub struct RootContext {
/// The actions that are available in Sprout.
actions: BTreeMap<String, ActionDeclaration>,
/// The device path of the loaded Sprout image.
loaded_image_path: Option<Box<DevicePath>>,
/// Platform timer started at the beginning of the boot process.
timer: PlatformTimer,
/// The global options of Sprout.
options: SproutOptions,
}
impl RootContext {
/// Creates a new root context with the `loaded_image_device_path` which will be stored
/// in the context for easy access. We also provide a `timer` which is used to measure elapsed
/// time for the bootloader.
pub fn new(
loaded_image_device_path: Box<DevicePath>,
timer: PlatformTimer,
options: SproutOptions,
) -> Self {
Self {
actions: BTreeMap::new(),
timer,
loaded_image_path: Some(loaded_image_device_path),
options,
}
}
/// Access the actions configured inside Sprout.
pub fn actions(&self) -> &BTreeMap<String, ActionDeclaration> {
&self.actions
}
/// Access the actions configured inside Sprout mutably for modification.
pub fn actions_mut(&mut self) -> &mut BTreeMap<String, ActionDeclaration> {
&mut self.actions
}
/// Access the platform timer that is started at the beginning of the boot process.
pub fn timer(&self) -> &PlatformTimer {
&self.timer
}
/// Access the device path of the loaded Sprout image.
pub fn loaded_image_path(&self) -> Result<&DevicePath> {
self.loaded_image_path
.as_deref()
.ok_or_else(|| anyhow!("no loaded image path"))
}
/// Access the global Sprout options.
pub fn options(&self) -> &SproutOptions {
&self.options
}
}
/// A context of Sprout. This is passed around different parts of Sprout and represents
/// a [RootContext] which is data that is shared globally, and [SproutContext] which works
/// sort of like a tree of values. You can cheaply clone a [SproutContext] and modify it with
/// new values, which override the values of contexts above it.
///
/// This is a core part of the value mechanism in Sprout which makes templating possible.
pub struct SproutContext {
root: Rc<RootContext>,
parent: Option<Rc<SproutContext>>,
values: BTreeMap<String, String>,
}
impl SproutContext {
/// Create a new [SproutContext] using `root` as the root context.
pub fn new(root: RootContext) -> Self {
Self {
root: Rc::new(root),
parent: None,
values: BTreeMap::new(),
}
}
/// Access the root context of this context.
pub fn root(&self) -> &RootContext {
self.root.as_ref()
}
/// Access the root context to modify it, if possible.
pub fn root_mut(&mut self) -> Option<&mut RootContext> {
Rc::get_mut(&mut self.root)
}
/// Retrieve the value specified by `key` from this context or its parents.
/// Returns `None` if the value is not found.
pub fn get(&self, key: impl AsRef<str>) -> Option<&String> {
self.values.get(key.as_ref()).or_else(|| {
self.parent
.as_ref()
.and_then(|parent| parent.get(key.as_ref()))
})
}
/// Collects all keys that are present in this context or its parents.
/// This is useful for iterating over all keys in a context.
pub fn all_keys(&self) -> Vec<String> {
let mut keys = BTreeSet::new();
for key in self.values.keys() {
keys.insert(key.clone());
}
if let Some(parent) = &self.parent {
keys.extend(parent.all_keys());
}
keys.into_iter().collect()
}
/// Collects all values that are present in this context or its parents.
/// This is useful for iterating over all values in a context.
pub fn all_values(&self) -> BTreeMap<String, String> {
let mut values = BTreeMap::new();
for key in self.all_keys() {
// Acquire the value from the context. Since retrieving all the keys will give us
// a full view of the context, we can be sure that the key exists.
let value = self.get(&key).cloned().unwrap_or_default();
values.insert(key.clone(), value);
}
values
}
/// Sets the value `key` to the value specified by `value` in this context.
/// If the parent context has this key, this will override that key.
pub fn set(&mut self, key: impl AsRef<str>, value: impl ToString) {
self.values
.insert(key.as_ref().to_string(), value.to_string());
}
/// Inserts all the specified `values` into this context.
/// These values will take precedence over its parent context.
pub fn insert(&mut self, values: &BTreeMap<String, String>) {
for (key, value) in values {
self.values.insert(key.clone(), value.clone());
}
}
/// Forks this context as an owned [SproutContext]. This makes it possible
/// to cheaply modify a context without cloning the parent context map.
/// The parent of the returned context is [self].
pub fn fork(self: &Rc<SproutContext>) -> Self {
Self {
root: self.root.clone(),
parent: Some(self.clone()),
values: BTreeMap::new(),
}
}
/// Freezes this context into a [Rc] which makes it possible to cheaply clone
/// and makes it less easy to modify a context. This can be used to pass the context
/// to various other parts of Sprout and ensure it won't be modified. Instead, once
/// a context is frozen, it should be [self.fork]'d to be modified.
pub fn freeze(self) -> Rc<SproutContext> {
Rc::new(self)
}
/// Finalizes a context by producing a context with no parent that contains all the values
/// of all parent contexts merged. This makes it possible to ensure [SproutContext] has no
/// inheritance with other [SproutContext]s. It will still contain a [RootContext] however.
pub fn finalize(&self) -> Result<SproutContext> {
// Collect all the values from the context and its parents.
let mut current_values = self.all_values();
// To ensure that there is no possible infinite loop, we need to check
// the number of iterations. If it exceeds CONTEXT_FINALIZE_ITERATION_LIMIT, we bail.
let mut iterations: usize = 0;
loop {
iterations += 1;
if iterations > CONTEXT_FINALIZE_ITERATION_LIMIT {
bail!("maximum number of replacement iterations reached while finalizing context");
}
let mut did_change = false;
let mut values = BTreeMap::new();
for (key, value) in &current_values {
let (changed, result) = Self::stamp_values(&current_values, value);
if changed {
// If the value changed, we need to re-stamp it.
did_change = true;
}
// Insert the new value into the value map.
values.insert(key.clone(), result);
}
current_values = values;
// If the values did not change, we can stop.
if !did_change {
break;
}
}
// Produce the final context.
Ok(Self {
root: self.root.clone(),
parent: None,
values: current_values,
})
}
/// Stamps the `text` value with the specified `values` map. The returned value indicates
/// whether the `text` has been changed and the value that was stamped and changed.
///
/// Stamping works like this:
/// - Start with the input text.
/// - Sort all the keys in reverse length order (longest keys first)
/// - For each key, if the key is not empty, replace $KEY in the text.
/// - Each follow-up iteration acts upon the last iterations result.
/// - We keep track if the text changes during the replacement.
/// - We return both whether the text changed during any iteration and the final result.
fn stamp_values(values: &BTreeMap<String, String>, text: impl AsRef<str>) -> (bool, String) {
let mut result = text.as_ref().to_string();
let mut did_change = false;
// Sort the keys by length. This is to ensure that we stamp the longest keys first.
// If we did not do this, "$abc" could be stamped by "$a" into an invalid result.
let mut keys = values.keys().collect::<Vec<_>>();
// Sort by key length, reversed. This results in the longest keys appearing first.
keys.sort_by_key(|key| Reverse(key.len()));
for key in keys {
// Empty keys are not supported.
if key.is_empty() {
continue;
}
// We can fetch the value from the map. It is verifiable that the key exists.
let Some(value) = values.get(key) else {
unreachable!("keys iterated over is collected on a map that cannot be modified");
};
let next_result = result.replace(&format!("${key}"), value);
if result != next_result {
did_change = true;
}
result = next_result;
}
(did_change, result)
}
/// Stamps the input `text` with all the values in this [SproutContext] and it's parents.
/// For example, if this context contains {"a":"b"}, and the text "hello\\$a", it will produce
/// "hello\\b" as an output string.
pub fn stamp(&self, text: impl AsRef<str>) -> String {
Self::stamp_values(&self.all_values(), text.as_ref()).1
}
/// Unloads a [SproutContext] back into an owned context. This
/// may not succeed if something else is holding onto the value.
pub fn unload(self: Rc<SproutContext>) -> Option<SproutContext> {
Rc::into_inner(self)
}
}

View File

@@ -0,0 +1,89 @@
use crate::context::SproutContext;
use crate::integrations::shim::{ShimInput, ShimSupport};
use crate::utils;
use anyhow::{Context, Result};
use log::info;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::rc::Rc;
use uefi::boot::SearchType;
/// Declares a driver configuration.
/// Drivers allow extending the functionality of Sprout.
/// Drivers are loaded at runtime and can provide extra functionality like filesystem support.
/// Drivers are loaded by their name, which is used to reference them in other concepts.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct DriverDeclaration {
/// The filesystem path to the driver.
/// This file should be an EFI executable that can be located and executed.
pub path: String,
}
/// Loads the driver specified by the `driver` declaration.
fn load_driver(context: Rc<SproutContext>, driver: &DriverDeclaration) -> Result<()> {
// Acquire the handle and device path of the loaded image.
let sprout_image = uefi::boot::image_handle();
// Resolve the path to the driver image.
let resolved = utils::resolve_path(
Some(context.root().loaded_image_path()?),
&context.stamp(&driver.path),
)
.context("unable to resolve path to driver")?;
// Load the driver image using the shim support integration.
// It will determine if the image needs to be loaded via the shim or can be loaded directly.
let image = ShimSupport::load(sprout_image, ShimInput::ResolvedPath(&resolved))?;
// Start the driver image, this is expected to return control to sprout.
// There is no guarantee that the driver will actually return control as it is
// just a standard EFI image.
uefi::boot::start_image(image).context("unable to start driver image")?;
Ok(())
}
/// Reconnects all handles to their controllers.
/// This is effectively a UEFI stack reload in a sense.
/// After we load all the drivers, we need to reconnect all of their handles
/// so that filesystems are recognized again.
fn reconnect() -> Result<()> {
// Locate all of the handles in the UEFI stack.
let handles = uefi::boot::locate_handle_buffer(SearchType::AllHandles)
.context("unable to locate handles buffer")?;
for handle in handles.iter() {
// Ignore the result as there is nothing we can do if reconnecting a controller fails.
// This is also likely to fail in some cases but should fail safely.
let _ = uefi::boot::connect_controller(*handle, None, None, true);
}
Ok(())
}
/// Load all the drivers specified in `drivers`.
/// There is no driver order currently. This will reconnect all the controllers
/// to all handles if at least one driver was loaded.
pub fn load(
context: Rc<SproutContext>,
drivers: &BTreeMap<String, DriverDeclaration>,
) -> Result<()> {
// If there are no drivers, we don't need to do anything.
if drivers.is_empty() {
return Ok(());
}
info!("loading drivers");
// Load all the drivers in no particular order.
for (name, driver) in drivers {
load_driver(context.clone(), driver).context(format!("unable to load driver: {}", name))?;
}
// Reconnect all the controllers to all handles.
reconnect().context("unable to reconnect drivers")?;
info!("loaded drivers");
// We've now loaded all the drivers, so we can return.
Ok(())
}

View File

@@ -0,0 +1,128 @@
use crate::context::SproutContext;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::rc::Rc;
/// Declares a boot entry to display in the boot menu.
///
/// Entries are the user-facing concept of Sprout, making it possible
/// to run a set of actions with a specific context.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct EntryDeclaration {
/// The title of the entry which will be display in the boot menu.
/// This is the pre-stamped value.
pub title: String,
/// The actions to run when the entry is selected.
#[serde(default)]
pub actions: Vec<String>,
/// The values to insert into the context when the entry is selected.
#[serde(default)]
pub values: BTreeMap<String, String>,
}
/// Represents an entry that is stamped and ready to be booted.
#[derive(Clone)]
pub struct BootableEntry {
name: String,
title: String,
context: Rc<SproutContext>,
declaration: EntryDeclaration,
default: bool,
pin_name: bool,
}
impl BootableEntry {
/// Create a new bootable entry to represent the full context of an entry.
pub fn new(
name: String,
title: String,
context: Rc<SproutContext>,
declaration: EntryDeclaration,
) -> Self {
Self {
name,
title,
context,
declaration,
default: false,
pin_name: false,
}
}
/// Fetch the name of the entry. This is usually a machine-identifiable key.
pub fn name(&self) -> &str {
&self.name
}
/// Fetch the title of the entry. This is usually a human-readable key.
pub fn title(&self) -> &str {
&self.title
}
/// Fetch the full context of the entry.
pub fn context(&self) -> Rc<SproutContext> {
Rc::clone(&self.context)
}
/// Fetch the declaration of the entry.
pub fn declaration(&self) -> &EntryDeclaration {
&self.declaration
}
/// Fetch whether the entry is the default entry.
pub fn is_default(&self) -> bool {
self.default
}
/// Fetch whether the entry is pinned, which prevents prefixing.
pub fn is_pin_name(&self) -> bool {
self.pin_name
}
/// Swap out the context of the entry.
pub fn swap_context(&mut self, context: Rc<SproutContext>) {
self.context = context;
}
/// Restamp the title with the current context.
pub fn restamp_title(&mut self) {
self.title = self.context.stamp(&self.title);
}
/// Mark this entry as the default entry.
pub fn mark_default(&mut self) {
self.default = true;
}
// Unmark this entry as the default entry.
pub fn unmark_default(&mut self) {
self.default = false;
}
/// Mark this entry as being pinned, which prevents prefixing.
pub fn mark_pin_name(&mut self) {
self.pin_name = true;
}
/// Prepend the name of the entry with `prefix`.
pub fn prepend_name_prefix(&mut self, prefix: &str) {
self.name.insert_str(0, prefix);
}
/// Determine if this entry matches `needle` by comparing to the name or title of the entry.
pub fn is_match(&self, needle: &str) -> bool {
self.name == needle || self.title == needle
}
/// Find an entry by `needle` inside the entry iterator `haystack`.
/// This will search for an entry by name, title, or index.
pub fn find<'a>(
needle: &str,
haystack: impl Iterator<Item = &'a BootableEntry>,
) -> Option<&'a BootableEntry> {
haystack
.enumerate()
.find(|(index, entry)| entry.is_match(needle) || index.to_string() == needle)
.map(|(_index, entry)| entry)
}
}

View File

@@ -0,0 +1,32 @@
use crate::context::SproutContext;
use crate::extractors::filesystem_device_match::FilesystemDeviceMatchExtractor;
use anyhow::{Result, bail};
use serde::{Deserialize, Serialize};
use std::rc::Rc;
/// The filesystem device match extractor.
pub mod filesystem_device_match;
/// Declares an extractor configuration.
/// Extractors allow calculating values at runtime
/// using built-in sprout modules.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct ExtractorDeclaration {
/// The filesystem device match extractor.
/// This extractor finds a filesystem using some search criteria and returns
/// the device root path that can concatenated with subpaths to access files
/// on a particular filesystem.
#[serde(default, rename = "filesystem-device-match")]
pub filesystem_device_match: Option<FilesystemDeviceMatchExtractor>,
}
/// Extracts the value using the specified `extractor` under the provided `context`.
/// The extractor must return a value, and if a value cannot be determined, an error
/// should be returned.
pub fn extract(context: Rc<SproutContext>, extractor: &ExtractorDeclaration) -> Result<String> {
if let Some(filesystem) = &extractor.filesystem_device_match {
filesystem_device_match::extract(context, filesystem)
} else {
bail!("unknown extractor configuration");
}
}

View File

@@ -0,0 +1,173 @@
use crate::context::SproutContext;
use crate::utils;
use anyhow::{Context, Result, anyhow, bail};
use serde::{Deserialize, Serialize};
use std::ops::Deref;
use std::rc::Rc;
use std::str::FromStr;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::media::file::{File, FileSystemVolumeLabel};
use uefi::proto::media::fs::SimpleFileSystem;
use uefi::{CString16, Guid};
/// The filesystem device match extractor.
/// This extractor finds a filesystem using some search criteria and returns
/// the device root path that can concatenated with subpaths to access files
/// on a particular filesystem.
/// The fallback value can be used to provide a value if no match is found.
///
/// This extractor requires all the criteria to match. If no criteria is provided,
/// an error is returned.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct FilesystemDeviceMatchExtractor {
/// Matches a filesystem that has the specified label.
#[serde(default, rename = "has-label")]
pub has_label: Option<String>,
/// Matches a filesystem that has the specified item.
/// An item is either a directory or file.
#[serde(default, rename = "has-item")]
pub has_item: Option<String>,
/// Matches a filesystem that has the specified partition UUID.
#[serde(default, rename = "has-partition-uuid")]
pub has_partition_uuid: Option<String>,
/// Matches a filesystem that has the specified partition type UUID.
#[serde(default, rename = "has-partition-type-uuid")]
pub has_partition_type_uuid: Option<String>,
/// The fallback value to use if no filesystem matches the criteria.
#[serde(default)]
pub fallback: Option<String>,
}
/// Extract a filesystem device path using the specified `context` and `extractor` configuration.
pub fn extract(
context: Rc<SproutContext>,
extractor: &FilesystemDeviceMatchExtractor,
) -> Result<String> {
// If no criteria are provided, bail with an error.
if extractor.has_label.is_none()
&& extractor.has_item.is_none()
&& extractor.has_partition_uuid.is_none()
&& extractor.has_partition_type_uuid.is_none()
{
bail!("at least one criteria is required for filesystem-device-match");
}
// Find all the filesystems inside the UEFI stack.
let handles = uefi::boot::find_handles::<SimpleFileSystem>()
.context("unable to find filesystem handles")?;
// Iterate over all the filesystems and check if they match the criteria.
for handle in handles {
// This defines whether a match has been found.
let mut has_match = false;
// Check if the partition info matches partition uuid criteria.
if let Some(ref has_partition_uuid) = extractor.has_partition_uuid {
// Parse the partition uuid from the extractor.
let parsed_uuid = Guid::from_str(has_partition_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-uuid: {}", e))?;
// Fetch the root of the device.
let root = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to fetch the device path of the filesystem")?
.deref()
.to_boxed();
// Fetch the partition uuid for this filesystem.
let partition_uuid = utils::partition_guid(&root, utils::PartitionGuidForm::Partition)
.context("unable to fetch the partition uuid of the filesystem")?;
// Compare the partition uuid to the parsed uuid.
// If it does not match, continue to the next filesystem.
if partition_uuid != Some(parsed_uuid) {
continue;
}
has_match = true;
}
// Check if the partition info matches partition type uuid criteria.
if let Some(ref has_partition_type_uuid) = extractor.has_partition_type_uuid {
// Parse the partition type uuid from the extractor.
let parsed_uuid = Guid::from_str(has_partition_type_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-type-uuid: {}", e))?;
// Fetch the root of the device.
let root = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to fetch the device path of the filesystem")?
.deref()
.to_boxed();
// Fetch the partition type uuid for this filesystem.
let partition_type_uuid =
utils::partition_guid(&root, utils::PartitionGuidForm::PartitionType)
.context("unable to fetch the partition uuid of the filesystem")?;
// Compare the partition type uuid to the parsed uuid.
// If it does not match, continue to the next filesystem.
if partition_type_uuid != Some(parsed_uuid) {
continue;
}
has_match = true;
}
// Open the filesystem protocol for this handle.
let mut filesystem = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(handle)
.context("unable to open filesystem protocol")?;
// Check if the filesystem matches label criteria.
if let Some(ref label) = extractor.has_label {
let want_label = CString16::try_from(context.stamp(label).as_str())
.context("unable to convert label to CString16")?;
let mut root = filesystem
.open_volume()
.context("unable to open filesystem volume")?;
let label = root
.get_boxed_info::<FileSystemVolumeLabel>()
.context("unable to get filesystem volume label")?;
if label.volume_label() != want_label {
continue;
}
has_match = true;
}
// Check if the filesystem matches item criteria.
if let Some(ref item) = extractor.has_item {
let want_item = CString16::try_from(context.stamp(item).as_str())
.context("unable to convert item to CString16")?;
let mut filesystem = FileSystem::new(filesystem);
// Check the metadata of the item.
// Ignore filesystem errors as we can't do anything useful with the error.
let Some(metadata) = filesystem.metadata(Path::new(&want_item)).ok() else {
continue;
};
// Only check directories and files.
if !(metadata.is_directory() || metadata.is_regular_file()) {
continue;
}
has_match = true;
}
// If there is no match, continue to the next filesystem.
if !has_match {
continue;
}
// If we have a match, return the device root path.
let path = uefi::boot::open_protocol_exclusive::<DevicePath>(handle)
.context("unable to open filesystem device path")?;
let path = path.deref();
// Acquire the device path root as a string.
return utils::device_path_root(path).context("unable to get device path root");
}
// If there is a fallback value, use it at this point.
if let Some(fallback) = &extractor.fallback {
return Ok(fallback.clone());
}
// Without a fallback, we can't continue, so bail.
bail!("unable to find matching filesystem")
}

View File

@@ -0,0 +1,58 @@
use crate::context::SproutContext;
use crate::entries::BootableEntry;
use crate::generators::bls::BlsConfiguration;
use crate::generators::list::ListConfiguration;
use crate::generators::matrix::MatrixConfiguration;
use anyhow::Result;
use anyhow::bail;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
pub mod bls;
pub mod list;
pub mod matrix;
/// Declares a generator configuration.
/// Generators allow generating entries at runtime based on a set of data.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct GeneratorDeclaration {
/// Matrix generator configuration.
/// Matrix allows you to specify multiple value-key values as arrays.
/// This allows multiplying the number of entries by any number of possible
/// configuration options. For example,
/// data.x = ["a", "b"]
/// data.y = ["c", "d"]
/// would generate an entry for each of these combinations:
/// x = a, y = c
/// x = a, y = d
/// x = b, y = c
/// x = b, y = d
#[serde(default)]
pub matrix: Option<MatrixConfiguration>,
/// BLS generator configuration.
/// BLS allows you to pass a filesystem path that contains a set of BLS entries.
/// It will generate a sprout entry for every supported BLS entry.
#[serde(default)]
pub bls: Option<BlsConfiguration>,
/// List generator configuration.
/// Allows you to specify a list of values to generate an entry from.
pub list: Option<ListConfiguration>,
}
/// Runs the generator specified by the `generator` option.
/// It uses the specified `context` as the parent context for
/// the generated entries, injecting more values if needed.
pub fn generate(
context: Rc<SproutContext>,
generator: &GeneratorDeclaration,
) -> Result<Vec<BootableEntry>> {
if let Some(matrix) = &generator.matrix {
matrix::generate(context, matrix)
} else if let Some(bls) = &generator.bls {
bls::generate(context, bls)
} else if let Some(list) = &generator.list {
list::generate(context, list)
} else {
bail!("unknown generator configuration");
}
}

View File

@@ -0,0 +1,227 @@
use crate::context::SproutContext;
use crate::entries::{BootableEntry, EntryDeclaration};
use crate::generators::bls::entry::BlsEntry;
use crate::utils;
use crate::utils::vercmp;
use anyhow::{Context, Result};
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::rc::Rc;
use std::str::FromStr;
use uefi::cstr16;
use uefi::fs::{FileSystem, PathBuf};
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
use uefi::proto::media::fs::SimpleFileSystem;
/// BLS entry parser.
mod entry;
/// The default path to the BLS directory.
const BLS_TEMPLATE_PATH: &str = "\\loader";
/// The configuration of the BLS generator.
/// The BLS uses the Bootloader Specification to produce
/// entries from an input template.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct BlsConfiguration {
/// The entry to use for as a template.
pub entry: EntryDeclaration,
/// The path to the BLS directory.
#[serde(default = "default_bls_path")]
pub path: String,
}
fn default_bls_path() -> String {
BLS_TEMPLATE_PATH.to_string()
}
// TODO(azenla): remove this once variable substitution is implemented.
/// This function is used to remove the `tuned_initrd` variable from entry values.
/// Fedora uses tuned which adds an initrd that shouldn't be used.
fn quirk_initrd_remove_tuned(input: String) -> String {
input.replace("$tuned_initrd", "").trim().to_string()
}
/// Sorts two entries according to the BLS sort system.
/// Reference: https://uapi-group.org/specifications/specs/boot_loader_specification/#sorting
fn sort_entries(a: &(BlsEntry, BootableEntry), b: &(BlsEntry, BootableEntry)) -> Ordering {
// Grab the components of both entries.
let (a_bls, a_boot) = a;
let (b_bls, b_boot) = b;
// Grab the sort keys from both entries.
let a_sort_key = a_bls.sort_key();
let b_sort_key = b_bls.sort_key();
// Compare the sort keys of both entries.
match a_sort_key.cmp(&b_sort_key) {
// If A and B sort keys are equal, sort by machine-id.
Ordering::Equal => {
// Grab the machine-id from both entries.
let a_machine_id = a_bls.machine_id();
let b_machine_id = b_bls.machine_id();
// Compare the machine-id of both entries.
match a_machine_id.cmp(&b_machine_id) {
// If both machine-id values are equal, sort by version.
Ordering::Equal => {
// Grab the version from both entries.
let a_version = a_bls.version();
let b_version = b_bls.version();
// Compare the version of both entries, sorting newer versions first.
match vercmp::compare_versions_optional(
a_version.as_deref(),
b_version.as_deref(),
)
.reverse()
{
// If both versions are equal, sort by file name in reverse order.
Ordering::Equal => {
// Grab the file name from both entries.
let a_name = a_boot.name();
let b_name = b_boot.name();
// Compare the file names of both entries, sorting newer entries first.
vercmp::compare_versions(a_name, b_name).reverse()
}
other => other,
}
}
other => other,
}
}
other => other,
}
}
/// Generates entries from the BLS entries directory using the specified `bls` configuration and
/// `context`. The BLS conversion is best-effort and will ignore any unsupported entries.
pub fn generate(context: Rc<SproutContext>, bls: &BlsConfiguration) -> Result<Vec<BootableEntry>> {
let mut entries = Vec::new();
// Stamp the path to the BLS directory.
let path = context.stamp(&bls.path);
// Resolve the path to the BLS directory.
let bls_resolved = utils::resolve_path(Some(context.root().loaded_image_path()?), &path)
.context("unable to resolve bls path")?;
// Construct a filesystem path to the BLS entries directory.
let mut entries_path = PathBuf::from(
bls_resolved
.sub_path
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert bls path to string")?,
);
entries_path.push(cstr16!("entries"));
// Open exclusive access to the BLS filesystem.
let fs =
uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(bls_resolved.filesystem_handle)
.context("unable to open bls filesystem")?;
let mut fs = FileSystem::new(fs);
// Read the BLS entries directory.
let entries_iter = fs
.read_dir(&entries_path)
.context("unable to read bls entries")?;
// For each entry in the BLS entries directory, parse the entry and add it to the list.
for entry in entries_iter {
// Unwrap the entry file info.
let entry = entry.context("unable to read bls item entry")?;
// Skip items that are not regular files.
if !entry.is_regular_file() {
continue;
}
// Get the file name of the filesystem item.
let mut name = entry.file_name().to_string();
// Ignore files that are not .conf files.
if !name.to_lowercase().ends_with(".conf") {
continue;
}
// Remove the .conf extension.
name.truncate(name.len() - 5);
// Skip over files that are named just ".conf" as they are not valid entry files.
if name.is_empty() {
continue;
}
// Create a mutable path so we can append the file name to produce the full path.
let mut full_entry_path = entries_path.to_path_buf();
full_entry_path.push(entry.file_name());
// Read the entry file.
let content = fs
.read(full_entry_path)
.context("unable to read bls file")?;
// Parse the entry file as a UTF-8 string.
let content = String::from_utf8(content).context("unable to read bls entry as utf8")?;
// Parse the entry file as a BLS entry.
let entry = BlsEntry::from_str(&content).context("unable to parse bls entry")?;
// Ignore entries that are not valid for Sprout.
if !entry.is_valid() {
continue;
}
// Produce a new sprout context for the entry with the extracted values.
let mut context = context.fork();
let title_base = entry.title().unwrap_or_else(|| name.clone());
let chainload = entry.chainload_path().unwrap_or_default();
let options = entry.options().unwrap_or_default();
let version = entry.version().unwrap_or_default();
let machine_id = entry.machine_id().unwrap_or_default();
// Put the initrd through a quirk modifier to support Fedora.
let initrd = quirk_initrd_remove_tuned(entry.initrd_path().unwrap_or_default());
// Combine the title with the version if a version is present, except if it already contains it.
// Sometimes BLS will have a version in the title already, and this makes it unique.
let title_full = if !version.is_empty() && !title_base.contains(&version) {
format!("{} {}", title_base, version)
} else {
title_base.clone()
};
context.set("title-base", title_base);
context.set("title", title_full);
context.set("chainload", chainload);
context.set("options", options);
context.set("initrd", initrd);
context.set("version", version);
context.set("machine-id", machine_id);
// Produce a new bootable entry.
let mut boot = BootableEntry::new(
name,
bls.entry.title.clone(),
context.freeze(),
bls.entry.clone(),
);
// Pin the entry name to prevent prefixing.
// This is needed as the bootloader interface requires the name to be
// the same as the entry file name, minus the .conf extension.
boot.mark_pin_name();
// Add the BLS entry to the list, along with the bootable entry.
entries.push((entry, boot));
}
// Sort all the entries according to the BLS sort system.
entries.sort_by(sort_entries);
// Collect all the bootable entries and return them.
Ok(entries.into_iter().map(|(_, boot)| boot).collect())
}

View File

@@ -0,0 +1,167 @@
use anyhow::{Error, Result};
use std::str::FromStr;
/// Represents a parsed BLS entry.
/// Fields unrelated to Sprout are not included.
#[derive(Default, Debug, Clone)]
pub struct BlsEntry {
/// The title of the entry.
pub title: Option<String>,
/// The options to pass to the entry.
pub options: Option<String>,
/// The path to the linux kernel.
pub linux: Option<String>,
/// The path to the initrd.
pub initrd: Option<String>,
/// The path to an EFI image.
pub efi: Option<String>,
/// The sort key for the entry.
pub sort_key: Option<String>,
/// The version of the entry.
pub version: Option<String>,
/// The machine id of the entry.
pub machine_id: Option<String>,
}
/// Parser for a BLS entry.
impl FromStr for BlsEntry {
type Err = Error;
/// Parses the `input` as a BLS entry file.
fn from_str(input: &str) -> Result<Self> {
// All the fields in a BLS entry we understand.
// Set all to None initially.
let mut title: Option<String> = None;
let mut options: Option<String> = None;
let mut linux: Option<String> = None;
let mut initrd: Option<String> = None;
let mut efi: Option<String> = None;
let mut sort_key: Option<String> = None;
let mut version: Option<String> = None;
let mut machine_id: Option<String> = None;
// Iterate over each line in the input and parse it.
for line in input.lines() {
// Trim the line.
let line = line.trim();
// Skip over empty lines and comments.
if line.is_empty() || line.starts_with('#') {
continue;
}
// Split the line once by whitespace. This technically includes newlines but since
// the lines iterator is used, there should never be a newline here.
let Some((key, value)) = line.split_once(char::is_whitespace) else {
continue;
};
// Match the key to a field we understand.
match key {
// The title of the entry.
"title" => {
title = Some(value.trim().to_string());
}
// The options to pass to the entry.
"options" => {
options = Some(value.trim().to_string());
}
// The path to the linux kernel.
"linux" => {
linux = Some(value.trim().to_string());
}
// The path to the initrd.
"initrd" => {
initrd = Some(value.trim().to_string());
}
// The path to an EFI image.
"efi" => {
efi = Some(value.trim().to_string());
}
"sort-key" => {
sort_key = Some(value.trim().to_string());
}
"version" => {
version = Some(value.trim().to_string());
}
"machine-id" => {
machine_id = Some(value.trim().to_string());
}
// Ignore any other key.
_ => {
continue;
}
}
}
// Produce a BLS entry from the parsed fields.
Ok(Self {
title,
options,
linux,
initrd,
efi,
sort_key,
version,
machine_id,
})
}
}
impl BlsEntry {
/// Checks if this BLS entry is something we can actually boot in Sprout.
pub fn is_valid(&self) -> bool {
self.linux.is_some() || self.efi.is_some()
}
/// Fetches the path to an EFI bootable image to boot, if any.
/// This prioritizes the linux field over efi.
/// It also converts / to \\ to match EFI path style.
pub fn chainload_path(&self) -> Option<String> {
self.linux
.clone()
.or(self.efi.clone())
.map(|path| path.replace('/', "\\").trim_start_matches('\\').to_string())
}
/// Fetches the path to an initrd to pass to the kernel, if any.
/// It also converts / to \\ to match EFI path style.
pub fn initrd_path(&self) -> Option<String> {
self.initrd
.clone()
.map(|path| path.replace('/', "\\").trim_start_matches('\\').to_string())
}
/// Fetches the options to pass to the kernel, if any.
pub fn options(&self) -> Option<String> {
self.options.clone()
}
/// Fetches the title of the entry, if any.
pub fn title(&self) -> Option<String> {
self.title.clone()
}
/// Fetches the sort key of the entry, if any.
pub fn sort_key(&self) -> Option<String> {
self.sort_key.clone()
}
/// Fetches the version of the entry, if any.
pub fn version(&self) -> Option<String> {
self.version.clone()
}
/// Fetches the machine id of the entry, if any.
pub fn machine_id(&self) -> Option<String> {
self.machine_id.clone()
}
}

View File

@@ -0,0 +1,52 @@
use crate::context::SproutContext;
use crate::entries::{BootableEntry, EntryDeclaration};
use anyhow::Result;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::rc::Rc;
/// List generator configuration.
/// The list generator produces multiple entries based
/// on a set of input maps.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct ListConfiguration {
/// The template entry to use for each generated entry.
#[serde(default)]
pub entry: EntryDeclaration,
/// The values to use as the input for the matrix.
#[serde(default)]
pub values: Vec<BTreeMap<String, String>>,
}
/// Generates a set of entries using the specified `list` configuration in the `context`.
pub fn generate(
context: Rc<SproutContext>,
list: &ListConfiguration,
) -> Result<Vec<BootableEntry>> {
let mut entries = Vec::new();
// For each combination, create a new context and entry.
for (index, combination) in list.values.iter().enumerate() {
let mut context = context.fork();
// Insert the combination into the context.
context.insert(combination);
let context = context.freeze();
// Stamp the entry title and actions from the template.
let mut entry = list.entry.clone();
entry.actions = entry
.actions
.into_iter()
.map(|action| context.stamp(action))
.collect();
// Push the entry into the list with the new context.
entries.push(BootableEntry::new(
index.to_string(),
entry.title.clone(),
context,
entry,
));
}
Ok(entries)
}

View File

@@ -0,0 +1,69 @@
use crate::context::SproutContext;
use crate::entries::{BootableEntry, EntryDeclaration};
use crate::generators::list;
use anyhow::Result;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::rc::Rc;
/// Matrix generator configuration.
/// The matrix generator produces multiple entries based
/// on input values multiplicatively.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct MatrixConfiguration {
/// The template entry to use for each generated entry.
#[serde(default)]
pub entry: EntryDeclaration,
/// The values to use as the input for the matrix.
#[serde(default)]
pub values: BTreeMap<String, Vec<String>>,
}
/// Builds out multiple generations of `input` based on a matrix style.
/// For example, if input is: {"x": ["a", "b"], "y": ["c", "d"]}
/// It will produce:
/// x: a, y: c
/// x: a, y: d
/// x: b, y: c
/// x: b, y: d
fn build_matrix(input: &BTreeMap<String, Vec<String>>) -> Vec<BTreeMap<String, String>> {
// Convert the input into a vector of tuples.
let items: Vec<(String, Vec<String>)> = input.clone().into_iter().collect();
// The result is a vector of maps.
let mut result: Vec<BTreeMap<String, String>> = vec![BTreeMap::new()];
for (key, values) in items {
let mut new_result = Vec::new();
// Produce all the combinations of the input values.
for combination in &result {
for value in &values {
let mut new_combination = combination.clone();
new_combination.insert(key.clone(), value.clone());
new_result.push(new_combination);
}
}
result = new_result;
}
result.into_iter().filter(|item| !item.is_empty()).collect()
}
/// Generates a set of entries using the specified `matrix` configuration in the `context`.
pub fn generate(
context: Rc<SproutContext>,
matrix: &MatrixConfiguration,
) -> Result<Vec<BootableEntry>> {
// Produce all the combinations of the input values.
let combinations = build_matrix(&matrix.values);
// Use the list generator to generate entries for each combination.
list::generate(
context,
&list::ListConfiguration {
entry: matrix.entry.clone(),
values: combinations,
},
)
}

View File

@@ -0,0 +1,4 @@
/// Implements support for the bootloader interface specification.
pub mod bootloader_interface;
/// Implements support for the shim loader application for Secure Boot.
pub mod shim;

View File

@@ -0,0 +1,314 @@
use crate::integrations::bootloader_interface::bitflags::LoaderFeatures;
use crate::platform::timer::PlatformTimer;
use crate::utils::device_path_subpath;
use crate::utils::variables::{VariableClass, VariableController};
use anyhow::{Context, Result};
use uefi::proto::device_path::DevicePath;
use uefi::{Guid, guid};
use uefi_raw::table::runtime::VariableVendor;
/// bitflags: LoaderFeatures bitflags.
mod bitflags;
/// The name of the bootloader to tell the system.
const LOADER_NAME: &str = "Sprout";
/// Represents the configured timeout for the bootloader interface.
pub enum BootloaderInterfaceTimeout {
/// Force the menu to be shown.
MenuForce,
/// Hide the menu.
MenuHidden,
/// Disable the menu.
MenuDisabled,
/// Set a timeout for the menu.
Timeout(u64),
/// Timeout is unspecified.
Unspecified,
}
/// Bootloader Interface support.
pub struct BootloaderInterface;
impl BootloaderInterface {
/// Bootloader Interface GUID from https://systemd.io/BOOT_LOADER_INTERFACE
const VENDOR: VariableController = VariableController::new(VariableVendor(guid!(
"4a67b082-0a4c-41cf-b6c7-440b29bb8c4f"
)));
/// The feature we support in Sprout.
fn features() -> LoaderFeatures {
LoaderFeatures::Xbootldr
| LoaderFeatures::LoadDriver
| LoaderFeatures::Tpm2ActivePcrBanks
| LoaderFeatures::RetainShim
| LoaderFeatures::ConfigTimeout
| LoaderFeatures::ConfigTimeoutOneShot
| LoaderFeatures::MenuDisable
| LoaderFeatures::EntryDefault
| LoaderFeatures::EntryOneShot
}
/// Tell the system that Sprout was initialized at the current time.
pub fn mark_init(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeInitUSec", timer)
}
/// Tell the system that Sprout is about to execute the boot entry.
pub fn mark_exec(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeExecUSec", timer)
}
/// Tell the system that Sprout is about to display the menu.
pub fn mark_menu(timer: &PlatformTimer) -> Result<()> {
Self::mark_time("LoaderTimeMenuUSec", timer)
}
/// Tell the system about the current time as measured by the platform timer.
/// Sets the variable specified by `key` to the number of microseconds.
fn mark_time(key: &str, timer: &PlatformTimer) -> Result<()> {
// Measure the elapsed time since the hardware timer was started.
let elapsed = timer.elapsed_since_lifetime();
Self::VENDOR.set_cstr16(
key,
&elapsed.as_micros().to_string(),
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what loader is being used and our features.
pub fn set_loader_info() -> Result<()> {
// Set the LoaderInfo variable with the name of the loader.
Self::VENDOR
.set_cstr16(
"LoaderInfo",
LOADER_NAME,
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to set loader info variable")?;
// Set the LoaderFeatures variable with the features we support.
Self::VENDOR
.set_u64le(
"LoaderFeatures",
Self::features().bits(),
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to set loader features variable")?;
Ok(())
}
/// Tell the system the relative path to the partition root of the current bootloader.
pub fn set_loader_path(path: &DevicePath) -> Result<()> {
let subpath = device_path_subpath(path).context("unable to get loader path subpath")?;
Self::VENDOR.set_cstr16(
"LoaderImageIdentifier",
&subpath,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the partition GUID of the ESP Sprout was booted from is.
pub fn set_partition_guid(guid: &Guid) -> Result<()> {
Self::VENDOR.set_cstr16(
"LoaderDevicePartUUID",
&guid.to_string(),
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what boot entries are available.
pub fn set_entries<N: AsRef<str>>(entries: impl Iterator<Item = N>) -> Result<()> {
// Entries are stored as a null-terminated list of CString16 strings back to back.
// Iterate over the entries and convert them to CString16 placing them into data.
let mut data = Vec::new();
for entry in entries {
// Convert the entry to CString16 little endian.
let encoded = entry
.as_ref()
.encode_utf16()
.flat_map(|c| c.to_le_bytes())
.collect::<Vec<u8>>();
// Write the bytes into the data buffer.
data.extend_from_slice(&encoded);
// Add a null terminator to the end of the entry.
data.extend_from_slice(&[0, 0]);
}
// If no data was generated, we will do nothing.
if data.is_empty() {
return Ok(());
}
Self::VENDOR.set(
"LoaderEntries",
&data,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the selected boot entry is.
pub fn set_selected_entry(entry: String) -> Result<()> {
Self::VENDOR.set_cstr16(
"LoaderEntrySelected",
&entry,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system about the UEFI firmware we are running on.
pub fn set_firmware_info() -> Result<()> {
// Access the firmware revision.
let firmware_revision = uefi::system::firmware_revision();
// Access the UEFI revision.
let uefi_revision = uefi::system::uefi_revision();
// Format the firmware information string into something human-readable.
let firmware_info = format!(
"{} {}.{:02}",
uefi::system::firmware_vendor(),
firmware_revision >> 16,
firmware_revision & 0xffff,
);
Self::VENDOR.set_cstr16(
"LoaderFirmwareInfo",
&firmware_info,
VariableClass::BootAndRuntimeTemporary,
)?;
// Format the firmware revision into something human-readable.
let firmware_type = format!(
"UEFI {}.{:02}",
uefi_revision.major(),
uefi_revision.minor()
);
Self::VENDOR.set_cstr16(
"LoaderFirmwareType",
&firmware_type,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Tell the system what the number of active PCR banks is.
/// If this is zero, that is okay.
pub fn set_tpm2_active_pcr_banks(value: u32) -> Result<()> {
// Format the value into the specification format.
let value = format!("0x{:08x}", value);
Self::VENDOR.set_cstr16(
"LoaderTpm2ActivePcrBanks",
&value,
VariableClass::BootAndRuntimeTemporary,
)
}
/// Retrieve the timeout value from the bootloader interface, using the specified `key`.
/// `remove` indicates whether, when found, we remove the variable.
fn get_timeout_value(key: &str, remove: bool) -> Result<Option<BootloaderInterfaceTimeout>> {
// Retrieve the timeout value from the bootloader interface.
let Some(value) = Self::VENDOR
.get_cstr16(key)
.context("unable to get timeout value")?
else {
return Ok(None);
};
// If we reach here, we know the value was specified.
// If `remove` is true, remove the variable.
if remove {
Self::VENDOR
.remove(key)
.context("unable to remove timeout variable")?;
}
// If the value is empty, return Unspecified.
if value.is_empty() {
return Ok(Some(BootloaderInterfaceTimeout::Unspecified));
}
// If the value is "menu-force", return MenuForce.
if value == "menu-force" {
return Ok(Some(BootloaderInterfaceTimeout::MenuForce));
}
// If the value is "menu-hidden", return MenuHidden.
if value == "menu-hidden" {
return Ok(Some(BootloaderInterfaceTimeout::MenuHidden));
}
// If the value is "menu-disabled", return MenuDisabled.
if value == "menu-disabled" {
return Ok(Some(BootloaderInterfaceTimeout::MenuDisabled));
}
// Parse the value as a u64 to decode an numeric value.
let value = value
.parse::<u64>()
.context("unable to parse timeout value")?;
// The specification says that a value of 0 means that the menu should be hidden.
if value == 0 {
return Ok(Some(BootloaderInterfaceTimeout::MenuHidden));
}
// If we reach here, we know it must be a real timeout value.
Ok(Some(BootloaderInterfaceTimeout::Timeout(value)))
}
/// Get the timeout from the bootloader interface.
/// This indicates how the menu should behave.
/// If no values are set, Unspecified is returned.
pub fn get_timeout() -> Result<BootloaderInterfaceTimeout> {
// Attempt to acquire the value of the LoaderConfigTimeoutOneShot variable.
// This should take precedence over the LoaderConfigTimeout variable.
let oneshot = Self::get_timeout_value("LoaderConfigTimeoutOneShot", true)
.context("unable to check for LoaderConfigTimeoutOneShot variable")?;
// If oneshot was found, return it.
if let Some(oneshot) = oneshot {
return Ok(oneshot);
}
// Attempt to acquire the value of the LoaderConfigTimeout variable.
// This will be used if the LoaderConfigTimeoutOneShot variable is not set.
let direct = Self::get_timeout_value("LoaderConfigTimeout", false)
.context("unable to check for LoaderConfigTimeout variable")?;
// If direct was found, return it.
if let Some(direct) = direct {
return Ok(direct);
}
// If we reach here, we know that neither variable was set.
// We provide the unspecified value instead.
Ok(BootloaderInterfaceTimeout::Unspecified)
}
/// Get the default entry set by the bootloader interface.
pub fn get_default_entry() -> Result<Option<String>> {
Self::VENDOR
.get_cstr16("LoaderEntryDefault")
.context("unable to get default entry from bootloader interface")
}
/// Get the oneshot entry set by the bootloader interface.
/// This should be the entry we boot.
pub fn get_oneshot_entry() -> Result<Option<String>> {
// Acquire the value of the LoaderEntryOneShot variable.
// If it is not set, return None.
let Some(value) = Self::VENDOR
.get_cstr16("LoaderEntryOneShot")
.context("unable to get oneshot entry from bootloader interface")?
else {
return Ok(None);
};
// Remove the oneshot entry from the bootloader interface.
Self::VENDOR
.remove("LoaderEntryOneShot")
.context("unable to remove oneshot entry")?;
// Return the oneshot value.
Ok(Some(value))
}
}

View File

@@ -0,0 +1,46 @@
use bitflags::bitflags;
bitflags! {
/// Feature bitflags for the bootloader interface.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LoaderFeatures: u64 {
/// Bootloader supports LoaderConfigTimeout.
const ConfigTimeout = 1 << 0;
/// Bootloader supports LoaderConfigTimeoutOneShot.
const ConfigTimeoutOneShot = 1 << 1;
/// Bootloader supports LoaderEntryDefault.
const EntryDefault = 1 << 2;
/// Bootloader supports LoaderEntryOneShot.
const EntryOneShot = 1 << 3;
/// Bootloader supports boot counting.
const BootCounting = 1 << 4;
/// Bootloader supports detection from XBOOTLDR partitions.
const Xbootldr = 1 << 5;
/// Bootloader supports the handling of random seeds.
const RandomSeed = 1 << 6;
/// Bootloader supports loading drivers.
const LoadDriver = 1 << 7;
/// Bootloader supports sort keys.
const SortKey = 1 << 8;
/// Bootloader supports saved entries.
const SavedEntry = 1 << 9;
/// Bootloader supports device trees.
const DeviceTree = 1 << 10;
/// Bootloader supports secure boot enroll.
const SecureBootEnroll = 1 << 11;
/// Bootloader retains the shim.
const RetainShim = 1 << 12;
/// Bootloader supports disabling the menu via the menu timeout variable.
const MenuDisable = 1 << 13;
/// Bootloader supports multi-profile UKI.
const MultiProfileUki = 1 << 14;
/// Bootloader reports URLs.
const ReportUrl = 1 << 15;
/// Bootloader supports type-1 UKIs.
const Type1Uki = 1 << 16;
/// Bootloader supports type-1 UKI urls.
const Type1UkiUrl = 1 << 17;
/// Bootloader indicates TPM2 active PCR banks.
const Tpm2ActivePcrBanks = 1 << 18;
}
}

View File

@@ -0,0 +1,316 @@
use crate::integrations::shim::hook::SecurityHook;
use crate::secure::SecureBoot;
use crate::utils;
use crate::utils::ResolvedPath;
use crate::utils::variables::{VariableClass, VariableController};
use anyhow::{Context, Result, anyhow, bail};
use log::warn;
use std::ffi::c_void;
use std::pin::Pin;
use uefi::Handle;
use uefi::boot::LoadImageSource;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
use uefi::proto::device_path::{DevicePath, FfiDevicePath};
use uefi::proto::unsafe_protocol;
use uefi_raw::table::runtime::VariableVendor;
use uefi_raw::{Guid, Status, guid};
/// Security hook support.
mod hook;
/// Support for the shim loader application for Secure Boot.
pub struct ShimSupport;
/// Input to the shim mechanisms.
pub enum ShimInput<'a> {
/// Data loaded into a buffer and ready to be verified, owned.
OwnedDataBuffer(Option<&'a ResolvedPath>, Pin<Box<[u8]>>),
/// Data loaded into a buffer and ready to be verified.
DataBuffer(Option<&'a ResolvedPath>, &'a [u8]),
/// Low-level data buffer provided by the security hook.
SecurityHookBuffer(Option<*const FfiDevicePath>, &'a [u8]),
/// Low-level owned data buffer provided by the security hook.
SecurityHookOwnedBuffer(Option<*const FfiDevicePath>, Pin<Box<[u8]>>),
/// Low-level path provided by the security hook.
SecurityHookPath(*const FfiDevicePath),
/// Data is provided as a resolved path. We will need to load the data to verify it.
/// The output will them return the loaded data.
ResolvedPath(&'a ResolvedPath),
}
impl<'a> ShimInput<'a> {
/// Accesses the buffer behind the shim input, if available.
pub fn buffer(&self) -> Option<&[u8]> {
match self {
ShimInput::OwnedDataBuffer(_, data) => Some(data),
ShimInput::SecurityHookOwnedBuffer(_, data) => Some(data),
ShimInput::SecurityHookBuffer(_, data) => Some(data),
ShimInput::SecurityHookPath(_) => None,
ShimInput::DataBuffer(_, data) => Some(data),
ShimInput::ResolvedPath(_) => None,
}
}
/// Accesses the full device path to the input.
pub fn file_path(&self) -> Option<&DevicePath> {
match self {
ShimInput::OwnedDataBuffer(path, _) => path.as_ref().map(|it| it.full_path.as_ref()),
ShimInput::DataBuffer(path, _) => path.as_ref().map(|it| it.full_path.as_ref()),
ShimInput::SecurityHookBuffer(path, _) => {
path.map(|it| unsafe { DevicePath::from_ffi_ptr(it) })
}
ShimInput::SecurityHookPath(path) => unsafe { Some(DevicePath::from_ffi_ptr(*path)) },
ShimInput::ResolvedPath(path) => Some(path.full_path.as_ref()),
ShimInput::SecurityHookOwnedBuffer(path, _) => {
path.map(|it| unsafe { DevicePath::from_ffi_ptr(it) })
}
}
}
/// Converts this input into an owned data buffer, where the data is loaded.
/// For ResolvedPath, this will read the file.
pub fn into_owned_data_buffer(self) -> Result<ShimInput<'a>> {
match self {
ShimInput::OwnedDataBuffer(root, data) => Ok(ShimInput::OwnedDataBuffer(root, data)),
ShimInput::DataBuffer(root, data) => Ok(ShimInput::OwnedDataBuffer(
root,
Box::into_pin(data.to_vec().into_boxed_slice()),
)),
ShimInput::SecurityHookPath(ffi_path) => {
// Acquire the file path.
let Some(path) = self.file_path() else {
bail!("unable to convert security hook path to device path");
};
// Convert the underlying path to a string.
let path = path
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device path to string")?;
let path = utils::resolve_path(None, &path.to_string())
.context("unable to resolve path")?;
// Read the file path.
let data = path.read_file()?;
Ok(ShimInput::SecurityHookOwnedBuffer(
Some(ffi_path),
Box::into_pin(data.to_vec().into_boxed_slice()),
))
}
ShimInput::SecurityHookBuffer(_, _) => {
bail!("unable to convert security hook buffer to owned data buffer")
}
ShimInput::ResolvedPath(path) => {
// Read the file path.
let data = path.read_file()?;
Ok(ShimInput::OwnedDataBuffer(
Some(path),
Box::into_pin(data.to_vec().into_boxed_slice()),
))
}
ShimInput::SecurityHookOwnedBuffer(path, data) => {
Ok(ShimInput::SecurityHookOwnedBuffer(path, data))
}
}
}
}
/// Output of the shim verification function.
/// Since the shim needs to load the data from disk, we will optimize by using that as the data
/// to actually boot.
pub enum ShimVerificationOutput {
/// The verification failed.
VerificationFailed(Status),
/// The data provided to the verifier was already a buffer.
VerifiedDataNotLoaded,
/// Verifying the data resulted in loading the data from the source.
/// This contains the data that was loaded, so it won't need to be loaded again.
VerifiedDataBuffer(Vec<u8>),
}
/// The shim lock protocol as defined by the shim loader application.
#[unsafe_protocol(ShimSupport::SHIM_LOCK_GUID)]
struct ShimLockProtocol {
/// Verify the data in `buffer` with the size `buffer_size` to determine if it is valid.
/// NOTE: On x86_64, this function uses SYSV calling conventions. On aarch64 it uses the
/// efiapi calling convention. This is truly wild, but you can verify it yourself by
/// looking at: https://github.com/rhboot/shim/blob/15.8/shim.h#L207-L212
/// There is no calling convention declared like there should be.
#[cfg(target_arch = "x86_64")]
pub shim_verify: unsafe extern "sysv64" fn(buffer: *const c_void, buffer_size: u32) -> Status,
#[cfg(target_arch = "aarch64")]
pub shim_verify: unsafe extern "efiapi" fn(buffer: *const c_void, buffer_size: u32) -> Status,
/// Unused function that is defined by the shim.
_generate_header: *mut c_void,
/// Unused function that is defined by the shim.
_read_header: *mut c_void,
}
impl ShimSupport {
/// Variable controller for the shim lock.
const SHIM_LOCK_VARIABLES: VariableController =
VariableController::new(VariableVendor(Self::SHIM_LOCK_GUID));
/// GUID for the shim lock protocol.
const SHIM_LOCK_GUID: Guid = guid!("605dab50-e046-4300-abb6-3dd810dd8b23");
/// GUID for the shim image loader protocol.
const SHIM_IMAGE_LOADER_GUID: Guid = guid!("1f492041-fadb-4e59-9e57-7cafe73a55ab");
/// Determines whether the shim is loaded.
pub fn loaded() -> Result<bool> {
Ok(utils::find_handle(&Self::SHIM_LOCK_GUID)
.context("unable to find shim lock protocol")?
.is_some())
}
/// Determines whether the shim loader is available.
pub fn loader_available() -> Result<bool> {
Ok(utils::find_handle(&Self::SHIM_IMAGE_LOADER_GUID)
.context("unable to find shim image loader protocol")?
.is_some())
}
/// Use the shim to validate the `input`, returning [ShimVerificationOutput] when complete.
pub fn verify(input: ShimInput) -> Result<ShimVerificationOutput> {
// Acquire the handle to the shim lock protocol.
let handle = utils::find_handle(&Self::SHIM_LOCK_GUID)
.context("unable to find shim lock protocol")?
.ok_or_else(|| anyhow!("unable to find shim lock protocol"))?;
// Acquire the protocol exclusively to the shim lock.
let protocol = uefi::boot::open_protocol_exclusive::<ShimLockProtocol>(handle)
.context("unable to open shim lock protocol")?;
// If the input type is a device path, we need to load the data.
let maybe_loaded_data = match input {
ShimInput::OwnedDataBuffer(_, _data) => {
bail!("owned data buffer is not supported in the verification function");
}
ShimInput::SecurityHookBuffer(_, _) => None,
ShimInput::SecurityHookOwnedBuffer(_, _) => None,
ShimInput::DataBuffer(_, _) => None,
ShimInput::ResolvedPath(path) => Some(path.read_file()?),
ShimInput::SecurityHookPath(_) => None,
};
// Convert the input to a buffer.
// If the input provides the data buffer, we will use that.
// Otherwise, we will use the data loaded by this function.
let buffer = match &input {
ShimInput::OwnedDataBuffer(_root, data) => data,
ShimInput::DataBuffer(_root, data) => *data,
ShimInput::ResolvedPath(_path) => maybe_loaded_data
.as_deref()
.context("expected data buffer to be loaded already")?,
ShimInput::SecurityHookBuffer(_, data) => data,
ShimInput::SecurityHookOwnedBuffer(_, data) => data,
ShimInput::SecurityHookPath(_) => {
bail!("security hook path input not supported in the verification function")
}
};
// Check if the buffer is too large to verify.
if buffer.len() > u32::MAX as usize {
bail!("buffer is too large to verify with shim lock protocol");
}
// Call the shim verify function.
// SAFETY: The shim verify function is specified by the shim lock protocol.
// Calling this function is considered safe because the shim verify function is
// guaranteed to be defined by the environment if we are able to acquire the protocol.
let status = unsafe {
(protocol.shim_verify)(buffer.as_ptr() as *const c_void, buffer.len() as u32)
};
// If the verification failed, return the verification failure output.
if !status.is_success() {
return Ok(ShimVerificationOutput::VerificationFailed(status));
}
// If verification succeeded, return the validation output,
// which might include the loaded data.
Ok(maybe_loaded_data
.map(ShimVerificationOutput::VerifiedDataBuffer)
.unwrap_or(ShimVerificationOutput::VerifiedDataNotLoaded))
}
/// Load the image specified by the `input` and returns an image handle.
pub fn load(current_image: Handle, input: ShimInput) -> Result<Handle> {
// Determine whether Secure Boot is enabled.
let secure_boot =
SecureBoot::enabled().context("unable to determine if secure boot is enabled")?;
// Determine whether the shim is loaded.
let shim_loaded = Self::loaded().context("unable to determine if shim is loaded")?;
// Determine whether the shim loader is available.
let shim_loader_available =
Self::loader_available().context("unable to determine if shim loader is available")?;
// Determines whether LoadImage in Boot Services must be patched.
// Version 16 of the shim doesn't require extra effort to load Secure Boot binaries.
// If the image loader is installed, we can skip over the security hook.
let requires_security_hook = secure_boot && shim_loaded && !shim_loader_available;
// If the security hook is required, we will bail for now.
if requires_security_hook {
// Install the security hook, if possible. If it's not, this is necessary to continue,
// so we should bail.
let installed = SecurityHook::install().context("unable to install security hook")?;
if !installed {
bail!("unable to install security hook required for this platform");
}
}
// If the shim is loaded, we will need to retain the shim protocol to allow
// loading multiple images.
if shim_loaded {
// Retain the shim protocol after loading the image.
Self::retain()?;
}
// Converts the shim input to an owned data buffer.
let input = input
.into_owned_data_buffer()
.context("unable to convert input to loaded data buffer")?;
// Constructs a LoadImageSource from the input.
let source = LoadImageSource::FromBuffer {
buffer: input.buffer().context("unable to get buffer from input")?,
file_path: input.file_path(),
};
// Loads the image using Boot Services LoadImage function.
let result = uefi::boot::load_image(current_image, source).context("unable to load image");
// If the security override is required, we will uninstall the security hook.
if requires_security_hook {
let uninstall_result = SecurityHook::uninstall();
// Ensure we don't mask load image errors if uninstalling fails.
if result.is_err()
&& let Err(uninstall_error) = &uninstall_result
{
// Warn on the error since the load image error is more important.
warn!("unable to uninstall security hook: {}", uninstall_error);
} else {
// Otherwise, ensure we handle the original uninstallation result.
uninstall_result?;
}
}
result
}
/// Set the ShimRetainProtocol variable to indicate that shim should retain the protocols
/// for the full lifetime of boot services.
pub fn retain() -> Result<()> {
Self::SHIM_LOCK_VARIABLES
.set_bool(
"ShimRetainProtocol",
true,
VariableClass::BootAndRuntimeTemporary,
)
.context("unable to retain shim protocol")?;
Ok(())
}
}

View File

@@ -0,0 +1,293 @@
use crate::integrations::shim::{ShimInput, ShimSupport, ShimVerificationOutput};
use crate::utils;
use anyhow::{Context, Result, bail};
use log::warn;
use std::sync::{LazyLock, Mutex};
use uefi::proto::device_path::FfiDevicePath;
use uefi::proto::unsafe_protocol;
use uefi::{Guid, guid};
use uefi_raw::Status;
/// GUID for the EFI_SECURITY_ARCH protocol.
const SECURITY_ARCH_GUID: Guid = guid!("a46423e3-4617-49f1-b9ff-d1bfa9115839");
/// GUID for the EFI_SECURITY_ARCH2 protocol.
const SECURITY_ARCH2_GUID: Guid = guid!("94ab2f58-1438-4ef1-9152-18941a3a0e68");
/// EFI_SECURITY_ARCH protocol definition.
#[unsafe_protocol(SECURITY_ARCH_GUID)]
pub struct SecurityArchProtocol {
/// Determines the file authentication state.
pub file_authentication_state: unsafe extern "efiapi" fn(
this: *const SecurityArchProtocol,
status: u32,
path: *const FfiDevicePath,
) -> Status,
}
/// EFI_SECURITY_ARCH2 protocol definition.
#[unsafe_protocol(SECURITY_ARCH2_GUID)]
pub struct SecurityArch2Protocol {
/// Determines the file authentication.
pub file_authentication: unsafe extern "efiapi" fn(
this: *const SecurityArch2Protocol,
path: *const FfiDevicePath,
file_buffer: *const u8,
file_size: usize,
boot_policy: bool,
) -> Status,
}
/// Global state for the security hook.
struct SecurityHookState {
original_hook: SecurityArchProtocol,
original_hook2: SecurityArch2Protocol,
}
/// Global state for the security hook.
/// This is messy, but it is safe given the mutex.
static GLOBAL_HOOK_STATE: LazyLock<Mutex<Option<SecurityHookState>>> =
LazyLock::new(|| Mutex::new(None));
/// Security hook helper.
pub struct SecurityHook;
impl SecurityHook {
/// Shared verifier logic for both hook types.
#[must_use]
fn verify(input: ShimInput) -> bool {
// Verify the input and convert the result to a status.
let status = match ShimSupport::verify(input) {
Ok(output) => match output {
// If the verification failed, return the access-denied status.
ShimVerificationOutput::VerificationFailed(status) => status,
// If the verification succeeded, return the success status.
ShimVerificationOutput::VerifiedDataNotLoaded => Status::SUCCESS,
ShimVerificationOutput::VerifiedDataBuffer(_) => Status::SUCCESS,
},
// If an error occurs, log the error since we can't return a better error.
// Then return the access-denied status.
Err(error) => {
warn!("unable to verify image: {}", error);
Status::ACCESS_DENIED
}
};
// If the status is not a success, log the status.
if !status.is_success() {
warn!("shim verification failed: {}", status);
}
// Return whether the status is a success.
// If it's not a success, the original hook should be called.
status.is_success()
}
/// File authentication state verifier for the EFI_SECURITY_ARCH protocol.
/// Takes the `path` and determines the verification.
unsafe extern "efiapi" fn arch_file_authentication_state(
this: *const SecurityArchProtocol,
status: u32,
path: *const FfiDevicePath,
) -> Status {
// Verify the path is not null.
if path.is_null() {
return Status::INVALID_PARAMETER;
}
// Construct a shim input from the path.
let input = ShimInput::SecurityHookPath(path);
// Convert the input to an owned data buffer.
let input = match input.into_owned_data_buffer() {
Ok(input) => input,
// If an error occurs, log the error and return the not found status.
Err(error) => {
warn!("unable to read data to be authenticated: {}", error);
return Status::NOT_FOUND;
}
};
// Verify the input, if it fails, call the original hook.
if !Self::verify(input) {
// Acquire the global hook state to grab the original hook.
let function = match GLOBAL_HOOK_STATE.lock() {
// We have acquired the lock, so we can find the original hook.
Ok(state) => match state.as_ref() {
// The hook state is available, so we can acquire the original hook.
Some(state) => state.original_hook.file_authentication_state,
// The hook state is not available, so we can't call the original hook.
None => {
warn!("global hook state is not available, unable to call original hook");
return Status::LOAD_ERROR;
}
},
Err(error) => {
warn!(
"unable to acquire global hook state lock to call original hook: {}",
error,
);
return Status::LOAD_ERROR;
}
};
// Call the original hook function to see what it reports.
// SAFETY: This function is safe to call as it is stored by us and is required
// in the UEFI specification.
unsafe { function(this, status, path) }
} else {
Status::SUCCESS
}
}
/// File authentication verifier for the EFI_SECURITY_ARCH2 protocol.
/// Takes the `path` and a file buffer to determine the verification.
unsafe extern "efiapi" fn arch2_file_authentication(
this: *const SecurityArch2Protocol,
path: *const FfiDevicePath,
file_buffer: *const u8,
file_size: usize,
boot_policy: bool,
) -> Status {
// Verify the path and file buffer are not null.
if path.is_null() || file_buffer.is_null() {
return Status::INVALID_PARAMETER;
}
// If the boot policy is true, we can't continue as we don't support that.
if boot_policy {
return Status::INVALID_PARAMETER;
}
// Construct a slice out of the file buffer and size.
let buffer = unsafe { std::slice::from_raw_parts(file_buffer, file_size) };
// Construct a shim input from the path.
let input = ShimInput::SecurityHookBuffer(Some(path), buffer);
// Verify the input, if it fails, call the original hook.
if !Self::verify(input) {
// Acquire the global hook state to grab the original hook.
let function = match GLOBAL_HOOK_STATE.lock() {
// We have acquired the lock, so we can find the original hook.
Ok(state) => match state.as_ref() {
// The hook state is available, so we can acquire the original hook.
Some(state) => state.original_hook2.file_authentication,
// The hook state is not available, so we can't call the original hook.
None => {
warn!("global hook state is not available, unable to call original hook");
return Status::LOAD_ERROR;
}
},
Err(error) => {
warn!(
"unable to acquire global hook state lock to call original hook: {}",
error
);
return Status::LOAD_ERROR;
}
};
// Call the original hook function to see what it reports.
// SAFETY: This function is safe to call as it is stored by us and is required
// in the UEFI specification.
unsafe { function(this, path, file_buffer, file_size, boot_policy) }
} else {
Status::SUCCESS
}
}
/// Install the security hook if needed.
pub fn install() -> Result<bool> {
// Find the security arch protocol. If we can't find it, we will return false.
let Some(hook_arch) = utils::find_handle(&SECURITY_ARCH_GUID)
.context("unable to check security arch existence")?
else {
return Ok(false);
};
// Find the security arch2 protocol. If we can't find it, we will return false.
let Some(hook_arch2) = utils::find_handle(&SECURITY_ARCH2_GUID)
.context("unable to check security arch2 existence")?
else {
return Ok(false);
};
// Open the security arch protocol.
let mut arch_protocol =
uefi::boot::open_protocol_exclusive::<SecurityArchProtocol>(hook_arch)
.context("unable to open security arch protocol")?;
// Open the security arch2 protocol.
let mut arch_protocol2 =
uefi::boot::open_protocol_exclusive::<SecurityArch2Protocol>(hook_arch2)
.context("unable to open security arch2 protocol")?;
// Construct the global state to store.
let state = SecurityHookState {
original_hook: SecurityArchProtocol {
file_authentication_state: arch_protocol.file_authentication_state,
},
original_hook2: SecurityArch2Protocol {
file_authentication: arch_protocol2.file_authentication,
},
};
// Acquire the lock to the global state and replace it.
let Ok(mut global_state) = GLOBAL_HOOK_STATE.lock() else {
bail!("unable to acquire global hook state lock");
};
global_state.replace(state);
// Install the hooks into the UEFI stack.
arch_protocol.file_authentication_state = Self::arch_file_authentication_state;
arch_protocol2.file_authentication = Self::arch2_file_authentication;
Ok(true)
}
/// Uninstalls the global security hook, if installed.
pub fn uninstall() -> Result<()> {
// Find the security arch protocol. If we can't find it, we will do nothing.
let Some(hook_arch) = utils::find_handle(&SECURITY_ARCH_GUID)
.context("unable to check security arch existence")?
else {
return Ok(());
};
// Find the security arch2 protocol. If we can't find it, we will do nothing.
let Some(hook_arch2) = utils::find_handle(&SECURITY_ARCH2_GUID)
.context("unable to check security arch2 existence")?
else {
return Ok(());
};
// Open the security arch protocol.
let mut arch_protocol =
uefi::boot::open_protocol_exclusive::<SecurityArchProtocol>(hook_arch)
.context("unable to open security arch protocol")?;
// Open the security arch2 protocol.
let mut arch_protocol2 =
uefi::boot::open_protocol_exclusive::<SecurityArch2Protocol>(hook_arch2)
.context("unable to open security arch2 protocol")?;
// Acquire the lock to the global state.
let Ok(mut global_state) = GLOBAL_HOOK_STATE.lock() else {
bail!("unable to acquire global hook state lock");
};
// Take the state and replace the original functions.
let Some(state) = global_state.take() else {
return Ok(());
};
// Reinstall the original functions.
arch_protocol.file_authentication_state = state.original_hook.file_authentication_state;
arch_protocol2.file_authentication = state.original_hook2.file_authentication;
Ok(())
}
}

395
crates/sprout/src/main.rs Normal file
View File

@@ -0,0 +1,395 @@
#![doc = include_str!("../README.md")]
#![feature(uefi_std)]
/// The delay to wait for when an error occurs in Sprout.
const DELAY_ON_ERROR: Duration = Duration::from_secs(10);
use crate::config::RootConfiguration;
use crate::context::{RootContext, SproutContext};
use crate::entries::BootableEntry;
use crate::integrations::bootloader_interface::{BootloaderInterface, BootloaderInterfaceTimeout};
use crate::options::SproutOptions;
use crate::options::parser::OptionsRepresentable;
use crate::phases::phase;
use crate::platform::timer::PlatformTimer;
use crate::platform::tpm::PlatformTpm;
use crate::secure::SecureBoot;
use crate::utils::PartitionGuidForm;
use anyhow::{Context, Result, bail};
use log::{error, info, warn};
use std::collections::BTreeMap;
use std::ops::Deref;
use std::time::Duration;
use uefi::proto::device_path::LoadedImageDevicePath;
/// actions: Code that can be configured and executed by Sprout.
pub mod actions;
/// autoconfigure: Autoconfigure Sprout based on the detected environment.
pub mod autoconfigure;
/// config: Sprout configuration mechanism.
pub mod config;
/// context: Stored values that can be cheaply forked and cloned.
pub mod context;
/// drivers: EFI drivers to load and provide extra functionality.
pub mod drivers;
/// entries: Boot menu entries that have a title and can execute actions.
pub mod entries;
/// extractors: Runtime code that can extract values into the Sprout context.
pub mod extractors;
/// generators: Runtime code that can generate entries with specific values.
pub mod generators;
/// platform: Integration or support code for specific hardware platforms.
pub mod platform;
/// menu: Display a boot menu to select an entry to boot.
pub mod menu;
/// integrations: Code that interacts with other systems.
pub mod integrations;
/// phases: Hooks into specific parts of the boot process.
pub mod phases;
/// sbat: Secure Boot Attestation section.
pub mod sbat;
/// secure: Secure Boot support.
pub mod secure;
/// setup: Code that initializes the UEFI environment for Sprout.
pub mod setup;
/// options: Parse the options of the Sprout executable.
pub mod options;
/// utils: Utility functions that are used by other parts of Sprout.
pub mod utils;
/// Run Sprout, returning an error if one occurs.
fn run() -> Result<()> {
// For safety reasons, we will note that Secure Boot is in beta on Sprout.
if SecureBoot::enabled().context("unable to determine Secure Boot status")? {
warn!("Secure Boot is enabled. Sprout Secure Boot is in beta.");
}
// Start the platform timer.
let timer = PlatformTimer::start();
// Mark the initialization of Sprout in the bootloader interface.
BootloaderInterface::mark_init(&timer)
.context("unable to mark initialization in bootloader interface")?;
// Tell the bootloader interface what firmware we are running on.
BootloaderInterface::set_firmware_info()
.context("unable to set firmware info in bootloader interface")?;
// Tell the bootloader interface what loader is being used.
BootloaderInterface::set_loader_info()
.context("unable to set loader info in bootloader interface")?;
// Acquire the number of active PCR banks on the TPM.
// If no TPM is available, this will return zero.
let active_pcr_banks = PlatformTpm::active_pcr_banks()?;
// Tell the bootloader interface what the number of active PCR banks is.
BootloaderInterface::set_tpm2_active_pcr_banks(active_pcr_banks)
.context("unable to set tpm2 active PCR banks in bootloader interface")?;
// Parse the options to the sprout executable.
let options = SproutOptions::parse().context("unable to parse options")?;
// If --autoconfigure is specified, we use a stub configuration.
let mut config = if options.autoconfigure {
info!("autoconfiguration enabled, configuration file will be ignored");
RootConfiguration::default()
} else {
// Load the configuration of sprout.
// At this point, the configuration has been validated and the specified
// version is checked to ensure compatibility.
config::loader::load(&options)?
};
// Grab the sprout.efi loaded image path.
// This is done in a block to ensure the release of the LoadedImageDevicePath protocol.
let loaded_image_path = {
let current_image_device_path_protocol = uefi::boot::open_protocol_exclusive::<
LoadedImageDevicePath,
>(uefi::boot::image_handle())
.context("unable to get loaded image device path")?;
current_image_device_path_protocol.deref().to_boxed()
};
// Grab the partition GUID of the ESP that sprout was loaded from.
let loaded_image_partition_guid =
utils::partition_guid(&loaded_image_path, PartitionGuidForm::Partition)
.context("unable to retrieve loaded image partition guid")?;
// Set the partition GUID of the ESP that sprout was loaded from in the bootloader interface.
if let Some(loaded_image_partition_guid) = loaded_image_partition_guid {
// Tell the system about the partition GUID.
BootloaderInterface::set_partition_guid(&loaded_image_partition_guid)
.context("unable to set partition guid in bootloader interface")?;
}
// Tell the bootloader interface what the loaded image path is.
BootloaderInterface::set_loader_path(&loaded_image_path)
.context("unable to set loader path in bootloader interface")?;
// Create the root context.
let mut root = RootContext::new(loaded_image_path, timer, options);
// Insert the configuration actions into the root context.
root.actions_mut().extend(config.actions.clone());
// Create a new sprout context with the root context.
let mut context = SproutContext::new(root);
// Insert the configuration values into the sprout context.
context.insert(&config.values);
// Freeze the sprout context so it can be shared and cheaply cloned.
let context = context.freeze();
// Execute the early phase.
phase(context.clone(), &config.phases.early).context("unable to execute early phase")?;
// Load all configured drivers.
drivers::load(context.clone(), &config.drivers).context("unable to load drivers")?;
// If --autoconfigure is specified or the loaded configuration has autoconfigure enabled,
// trigger the autoconfiguration mechanism.
if context.root().options().autoconfigure || config.options.autoconfigure {
autoconfigure::autoconfigure(&mut config).context("unable to autoconfigure")?;
}
// Unload the context so that it can be modified.
let Some(mut context) = context.unload() else {
bail!("context safety violation while trying to unload context");
};
// Perform root context modification in a block to release the modification when complete.
{
// Modify the root context to include the autoconfigured actions.
let Some(root) = context.root_mut() else {
bail!("context safety violation while trying to modify root context");
};
// Extend the root context with the autoconfigured actions.
root.actions_mut().extend(config.actions);
// Insert any modified root values.
context.insert(&config.values);
}
// Refreeze the context to ensure that further operations can share the context.
let context = context.freeze();
// Run all the extractors declared in the configuration.
let mut extracted = BTreeMap::new();
for (name, extractor) in &config.extractors {
let value = extractors::extract(context.clone(), extractor)
.context(format!("unable to extract value {}", name))?;
info!("extracted value {}: {}", name, value);
extracted.insert(name.clone(), value);
}
let mut context = context.fork();
// Insert the extracted values into the sprout context.
context.insert(&extracted);
let context = context.freeze();
// Execute the startup phase.
phase(context.clone(), &config.phases.startup).context("unable to execute startup phase")?;
let mut entries = Vec::new();
// Insert all the static entries from the configuration into the entry list.
for (name, entry) in config.entries {
// Associate the main context with the static entry.
entries.push(BootableEntry::new(
name,
entry.title.clone(),
context.clone(),
entry,
));
}
// Run all the generators declared in the configuration.
for (name, generator) in config.generators {
let context = context.fork().freeze();
// We will prefix all entries with [name]-, provided the name is not pinned.
let prefix = format!("{}-", name);
// Add all the entries generated by the generator to the entry list.
// The generator specifies the context associated with the entry.
for mut entry in generators::generate(context.clone(), &generator)? {
// If the entry name is not pinned, prepend the name prefix.
if !entry.is_pin_name() {
entry.prepend_name_prefix(&prefix);
}
entries.push(entry);
}
}
for entry in &mut entries {
let mut context = entry.context().fork();
// Insert the values from the entry configuration into the
// sprout context to use with the entry itself.
context.insert(&entry.declaration().values);
let context = context
.finalize()
.context("unable to finalize context")?
.freeze();
// Provide the new context to the bootable entry.
entry.swap_context(context);
// Restamp the title with any values.
entry.restamp_title();
// Mark this entry as the default entry if it is declared as such.
if let Some(ref default_entry) = config.options.default_entry {
// If the entry matches the default entry, mark it as the default entry.
if entry.is_match(default_entry) {
entry.mark_default();
}
}
}
// Tell the bootloader interface what entries are available.
BootloaderInterface::set_entries(entries.iter().map(|entry| entry.name()))
.context("unable to set entries in bootloader interface")?;
// Execute the late phase.
phase(context.clone(), &config.phases.late).context("unable to execute late phase")?;
// Acquire the timeout setting from the bootloader interface.
let bootloader_interface_timeout =
BootloaderInterface::get_timeout().context("unable to get bootloader interface timeout")?;
// Acquire the default entry from the bootloader interface.
let bootloader_interface_default_entry = BootloaderInterface::get_default_entry()
.context("unable to get bootloader interface default entry")?;
// Acquire the oneshot entry from the bootloader interface.
let bootloader_interface_oneshot_entry = BootloaderInterface::get_oneshot_entry()
.context("unable to get bootloader interface oneshot entry")?;
// If --boot is specified, boot that entry immediately.
let mut force_boot_entry = context.root().options().boot.clone();
// If --force-menu is specified, show the boot menu regardless of the value of --boot.
let mut force_boot_menu = context.root().options().force_menu;
// Determine the menu timeout in seconds based on the options or configuration.
// We prefer the options over the configuration to allow for overriding.
let mut menu_timeout = context
.root()
.options()
.menu_timeout
.unwrap_or(config.options.menu_timeout);
// Apply bootloader interface timeout settings.
match bootloader_interface_timeout {
BootloaderInterfaceTimeout::MenuForce => {
// Force the boot menu.
force_boot_menu = true;
}
BootloaderInterfaceTimeout::MenuHidden | BootloaderInterfaceTimeout::MenuDisabled => {
// Hide the boot menu by setting the timeout to zero.
menu_timeout = 0;
}
BootloaderInterfaceTimeout::Timeout(timeout) => {
// Configure the timeout to the specified value.
menu_timeout = timeout;
}
BootloaderInterfaceTimeout::Unspecified => {
// Do nothing.
}
}
// Apply bootloader interface default entry settings.
if let Some(ref bootloader_interface_default_entry) = bootloader_interface_default_entry {
// Iterate over all the entries and mark the default entry as the one specified.
for entry in &mut entries {
// Mark the entry as the default entry if it matches the specified entry.
// If the entry does not match the specified entry, unmark it as the default entry.
if entry.is_match(bootloader_interface_default_entry) {
entry.mark_default();
} else {
entry.unmark_default();
}
}
}
// Apply bootloader interface oneshot entry settings.
// If set, we will force booting the oneshot entry.
if let Some(ref bootloader_interface_oneshot_entry) = bootloader_interface_oneshot_entry {
force_boot_entry = Some(bootloader_interface_oneshot_entry.clone());
}
// If no entries were the default, pick the first entry as the default entry.
if entries.iter().all(|entry| !entry.is_default())
&& let Some(entry) = entries.first_mut()
{
entry.mark_default();
}
// Convert the menu timeout to a duration.
let menu_timeout = Duration::from_secs(menu_timeout);
// Use the forced boot entry if possible, otherwise pick the first entry using a boot menu.
let entry = if !force_boot_menu && let Some(ref force_boot_entry) = force_boot_entry {
BootableEntry::find(force_boot_entry, entries.iter())
.context(format!("unable to find entry: {force_boot_entry}"))?
} else {
// Delegate to the menu to select an entry to boot.
menu::select(&timer, menu_timeout, &entries)
.context("unable to select entry via boot menu")?
};
// Tell the bootloader interface what the selected entry is.
BootloaderInterface::set_selected_entry(entry.name().to_string())
.context("unable to set selected entry in bootloader interface")?;
// Execute all the actions for the selected entry.
for action in &entry.declaration().actions {
let action = entry.context().stamp(action);
actions::execute(entry.context().clone(), &action)
.context(format!("unable to execute action '{}'", action))?;
}
Ok(())
}
/// The main entrypoint of sprout.
/// It is possible this function will not return if actions that are executed
/// exit boot services or do not return control to sprout.
fn main() -> Result<()> {
// Initialize the basic UEFI environment.
setup::init()?;
// Run Sprout, then handle the error.
let result = run();
if let Err(ref error) = result {
// Print an error trace.
error!("sprout encountered an error");
for (index, stack) in error.chain().enumerate() {
error!("[{}]: {}", index, stack);
}
// Sleep to allow the user to read the error.
uefi::boot::stall(DELAY_ON_ERROR);
}
// Sprout doesn't necessarily guarantee anything was booted.
// If we reach here, we will exit back to whoever called us.
Ok(())
}

197
crates/sprout/src/menu.rs Normal file
View File

@@ -0,0 +1,197 @@
use crate::entries::BootableEntry;
use crate::integrations::bootloader_interface::BootloaderInterface;
use crate::platform::timer::PlatformTimer;
use anyhow::{Context, Result, bail};
use log::{info, warn};
use std::time::Duration;
use uefi::ResultExt;
use uefi::boot::TimerTrigger;
use uefi::proto::console::text::{Input, Key, ScanCode};
use uefi_raw::table::boot::{EventType, Tpl};
/// The characters that can be used to select an entry from keys.
const ENTRY_NUMBER_TABLE: &[char] = &['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
/// Represents the operation that can be performed by the boot menu.
#[derive(PartialEq, Eq)]
enum MenuOperation {
/// The user selected a numbered entry.
Number(usize),
/// The user selected the escape key to exit the boot menu.
Exit,
/// The user selected the enter key to display the entries again.
Continue,
/// Timeout occurred.
Timeout,
/// No operation should be performed.
Nop,
}
/// Read a key from the input device with a duration, returning the [MenuOperation] that was
/// performed.
fn read(input: &mut Input, timeout: &Duration) -> Result<MenuOperation> {
// The event to wait for a key press.
let key_event = input
.wait_for_key_event()
.context("unable to acquire key event")?;
// Timer event for timeout.
// SAFETY: The timer event creation allocated a timer pointer on the UEFI heap.
// This is validated safe as long as we are in boot services.
let timer_event = unsafe {
uefi::boot::create_event_ex(EventType::TIMER, Tpl::CALLBACK, None, None, None)
.context("unable to create timer event")?
};
// The timeout is in increments of 100 nanoseconds.
let timeout_hundred_nanos = timeout.as_nanos() / 100;
// Check if the timeout is too large to fit into an u64.
if timeout_hundred_nanos > u64::MAX as u128 {
bail!("timeout duration overflow");
}
// Set a timer to trigger after the specified duration.
let trigger = TimerTrigger::Relative(timeout_hundred_nanos as u64);
uefi::boot::set_timer(&timer_event, trigger).context("unable to set timeout timer")?;
let mut events = vec![timer_event, key_event];
// Wait for either the timer event or the key event to trigger.
// Store the result so that we can free the timer event.
let event_result = uefi::boot::wait_for_event(&mut events)
.discard_errdata()
.context("unable to wait for event");
// Close the timer event that we acquired.
// We don't need to close the key event because it is owned globally.
if let Some(timer_event) = events.into_iter().next() {
// Store the result of the close event so we can determine if we can safely assert it.
let close_event_result =
uefi::boot::close_event(timer_event).context("unable to close timer event");
if event_result.is_err()
&& let Err(ref close_event_error) = close_event_result
{
// Log a warning if we failed to close the timer event.
// This is done to ensure we don't mask the wait_for_event error.
warn!("unable to close timer event: {}", close_event_error);
} else {
// If we reach here, we can safely assert that the close event succeeded without
// masking the wait_for_event error.
close_event_result?;
}
}
// Acquire the event that triggered.
let event = event_result?;
// The first event is the timer event.
// If it has triggered, the user did not select a numbered entry.
if event == 0 {
return Ok(MenuOperation::Timeout);
}
// If we reach here, there is a key event.
let Some(key) = input.read_key().context("unable to read key")? else {
bail!("no key was pressed");
};
match key {
Key::Printable(c) => {
// If the key is not ascii, we can't process it.
if !c.is_ascii() {
return Ok(MenuOperation::Continue);
}
// Convert the key to a char.
let c: char = c.into();
// Find the key pressed in the entry number table or continue.
Ok(ENTRY_NUMBER_TABLE
.iter()
.position(|&x| x == c)
.map(MenuOperation::Number)
.unwrap_or(MenuOperation::Continue))
}
// The escape key is used to exit the boot menu.
Key::Special(ScanCode::ESCAPE) => Ok(MenuOperation::Exit),
// If the special key is unknown, do nothing.
Key::Special(_) => Ok(MenuOperation::Nop),
}
}
/// Selects an entry from the list of entries using the boot menu.
fn select_with_input<'a>(
input: &mut Input,
timeout: Duration,
entries: &'a [BootableEntry],
) -> Result<&'a BootableEntry> {
loop {
// If the timeout is not zero, let's display the boot menu.
if !timeout.is_zero() {
// Until a pretty menu is available, we just print all the entries.
info!("Boot Menu:");
for (index, entry) in entries.iter().enumerate() {
let title = entry.context().stamp(&entry.declaration().title);
info!(" [{}] {}", index, title);
}
}
// Read from input until a valid operation is selected.
let operation = loop {
// If the timeout is zero, we can exit immediately because there is nothing to do.
if timeout.is_zero() {
break MenuOperation::Exit;
}
info!("Select a boot entry using the number keys.");
info!("Press Escape to exit and enter to display the entries again.");
let operation = read(input, &timeout)?;
if operation != MenuOperation::Nop {
break operation;
}
};
match operation {
// Entry was selected by number. If the number is invalid, we continue.
MenuOperation::Number(index) => {
let Some(entry) = entries.get(index) else {
info!("invalid entry number");
continue;
};
return Ok(entry);
}
// When the user exits the boot menu or a timeout occurs, we should
// boot the default entry, if any.
MenuOperation::Exit | MenuOperation::Timeout => {
return entries
.iter()
.find(|item| item.is_default())
.context("no default entry available");
}
// If the operation is to continue or nop, we can just run the loop again.
MenuOperation::Continue | MenuOperation::Nop => {
continue;
}
}
}
}
/// Shows a boot menu to select a bootable entry to boot.
/// The actual work is done internally in [select_with_input] which is called
/// within the context of the standard input device.
pub fn select<'live>(
timer: &'live PlatformTimer,
timeout: Duration,
entries: &'live [BootableEntry],
) -> Result<&'live BootableEntry> {
// Notify the bootloader interface that we are about to display the menu.
BootloaderInterface::mark_menu(timer)
.context("unable to mark menu display in bootloader interface")?;
// Acquire the standard input device and run the boot menu.
uefi::system::with_stdin(move |input| select_with_input(input, timeout, entries))
}

View File

@@ -0,0 +1,133 @@
use crate::options::parser::{OptionDescription, OptionForm, OptionsRepresentable};
use anyhow::{Context, Result, bail};
use std::collections::BTreeMap;
/// The Sprout options parser.
pub mod parser;
/// Default configuration file path.
const DEFAULT_CONFIG_PATH: &str = "\\sprout.toml";
/// The parsed options of sprout.
#[derive(Debug)]
pub struct SproutOptions {
/// Configures Sprout automatically based on the environment.
pub autoconfigure: bool,
/// Path to a configuration file to load.
pub config: String,
/// Entry to boot without showing the boot menu.
pub boot: Option<String>,
/// Force display of the boot menu.
pub force_menu: bool,
/// The timeout for the boot menu in seconds.
pub menu_timeout: Option<u64>,
}
/// The default Sprout options.
impl Default for SproutOptions {
fn default() -> Self {
Self {
autoconfigure: false,
config: DEFAULT_CONFIG_PATH.to_string(),
boot: None,
force_menu: false,
menu_timeout: None,
}
}
}
/// The options parser mechanism for Sprout.
impl OptionsRepresentable for SproutOptions {
/// Produce the [SproutOptions] structure.
type Output = Self;
/// All the Sprout options that are defined.
fn options() -> &'static [(&'static str, OptionDescription<'static>)] {
&[
(
"autoconfigure",
OptionDescription {
description: "Enable Sprout Autoconfiguration",
form: OptionForm::Flag,
},
),
(
"config",
OptionDescription {
description: "Path to Sprout configuration file",
form: OptionForm::Value,
},
),
(
"boot",
OptionDescription {
description: "Entry to boot, bypassing the menu",
form: OptionForm::Value,
},
),
(
"force-menu",
OptionDescription {
description: "Force showing of the boot menu",
form: OptionForm::Flag,
},
),
(
"menu-timeout",
OptionDescription {
description: "Boot menu timeout, in seconds",
form: OptionForm::Value,
},
),
(
"help",
OptionDescription {
description: "Display Sprout Help",
form: OptionForm::Help,
},
),
]
}
/// Produces [SproutOptions] from the parsed raw `options` map.
fn produce(options: BTreeMap<String, Option<String>>) -> Result<Self> {
// Use the default value of sprout options and have the raw options be parsed into it.
let mut result = Self::default();
for (key, value) in options {
match key.as_str() {
"autoconfigure" => {
// Enable autoconfiguration.
result.autoconfigure = true;
}
"config" => {
// The configuration file to load.
result.config = value.context("--config option requires a value")?;
}
"boot" => {
// The entry to boot.
result.boot = Some(value.context("--boot option requires a value")?);
}
"force-menu" => {
// Force showing of the boot menu.
result.force_menu = true;
}
"menu-timeout" => {
// The timeout for the boot menu in seconds.
let value = value.context("--menu-timeout option requires a value")?;
let value = value
.parse::<u64>()
.context("menu-timeout must be a number")?;
result.menu_timeout = Some(value);
}
_ => bail!("unknown option: --{key}"),
}
}
Ok(result)
}
}

View File

@@ -0,0 +1,163 @@
use anyhow::{Context, Result, bail};
use log::info;
use std::collections::BTreeMap;
/// The type of option. This disambiguates different behavior
/// of how options are handled.
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq)]
pub enum OptionForm {
/// A flag, like --verbose.
Flag,
/// A value, in the form --abc 123 or --abc=123.
Value,
/// Help flag, like --help.
Help,
}
/// The description of an option, used in the options parser
/// to make decisions about how to progress.
#[derive(Debug, Clone)]
pub struct OptionDescription<'a> {
/// The description of the option.
pub description: &'a str,
/// The type of option to parse as.
pub form: OptionForm,
}
/// Represents a type that can be parsed from command line arguments.
/// This is a super minimal options parser mechanism just for Sprout.
pub trait OptionsRepresentable {
/// The output type that parsing will produce.
type Output;
/// The configured options for this type. This should describe all the options
/// that are valid to produce the type. The left hand side is the name of the option,
/// and the right hand side is the description.
fn options() -> &'static [(&'static str, OptionDescription<'static>)];
/// Produces the type by taking the `options` and processing it into the output.
fn produce(options: BTreeMap<String, Option<String>>) -> Result<Self::Output>;
/// For minimalism, we don't want a full argument parser. Instead, we use
/// a simple --xyz = xyz: None and --abc 123 = abc: Some("123") format.
/// We also support --abc=123 = abc: Some("123") format.
fn parse_raw() -> Result<BTreeMap<String, Option<String>>> {
// Access the configured options for this type.
let configured: BTreeMap<_, _> = BTreeMap::from_iter(Self::options().to_vec());
// Collect all the arguments to Sprout.
// Skip the first argument, which is the path to our executable.
let mut args = std::env::args().skip(1).collect::<Vec<_>>();
// Correct firmware that may add invalid arguments at the start.
// Witnessed this on a Dell Precision 5690 when direct booting.
loop {
// Grab the first argument or break.
let Some(arg) = args.first() else {
break;
};
// If the argument starts with a tilde, remove it.
if arg.starts_with("`") {
args.remove(0);
continue;
}
break;
}
// Represent options as key-value pairs.
let mut options = BTreeMap::new();
// Iterators makes this way easier.
let mut iterator = args.into_iter().peekable();
loop {
// Consume the next option, if any.
let Some(option) = iterator.next() else {
break;
};
// If the doesn't start with --, that is invalid.
if !option.starts_with("--") {
bail!("invalid option: {option}");
}
// Strip the -- prefix off.
let mut option = option["--".len()..].trim().to_string();
// An optional value.
let mut value = None;
// Check if the option is of the form --abc=123
if let Some((part_key, part_value)) = option.split_once('=') {
let part_key = part_key.to_string();
let part_value = part_value.to_string();
option = part_key;
value = Some(part_value);
}
// Error on empty option names.
if option.is_empty() {
bail!("invalid empty option");
}
// Find the description of the configured option, if any.
let Some(description) = configured.get(option.as_str()) else {
bail!("invalid option: --{option}");
};
// Check if the option requires a value and error if none was provided.
if description.form == OptionForm::Value && value.is_none() {
// Check for the next value.
let maybe_next = iterator.peek();
// If the next value isn't another option, set the value to the next value.
// Otherwise, it is None.
value = if let Some(next) = maybe_next
&& !next.starts_with("--")
{
iterator.next()
} else {
None
};
}
// If the option form does not support a value and there is a value, error.
if description.form != OptionForm::Value && value.is_some() {
bail!("option --{} does not take a value", option);
}
// Handle the --help flag case.
if description.form == OptionForm::Help {
// Generic configured options output.
info!("Configured Options:");
for (name, description) in &configured {
info!(
" --{}{}: {}",
name,
if description.form == OptionForm::Value {
" <value>"
} else {
""
},
description.description
);
}
// Exit because the help has been displayed.
std::process::exit(0);
}
// Insert the option and the value into the map.
options.insert(option, value);
}
Ok(options)
}
/// Parses the program arguments as a [Self::Output], calling [Self::parse_raw] and [Self::produce].
fn parse() -> Result<Self::Output> {
// Parse the program arguments into a raw map.
let options = Self::parse_raw().context("unable to parse options")?;
// Produce the options from the map.
Self::produce(options)
}
}

View File

@@ -0,0 +1,54 @@
use crate::actions;
use crate::context::SproutContext;
use anyhow::{Context, Result};
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::rc::Rc;
/// Configures the various phases of the boot process.
/// This allows hooking various phases to run actions.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct PhasesConfiguration {
/// The early phase is run before drivers are loaded.
#[serde(default)]
pub early: Vec<PhaseConfiguration>,
/// The startup phase is run after drivers are loaded, but before entries are displayed.
#[serde(default)]
pub startup: Vec<PhaseConfiguration>,
/// The late phase is run after the entry is chosen, but before the actions are executed.
#[serde(default)]
pub late: Vec<PhaseConfiguration>,
}
/// Configures a single phase of the boot process.
/// There can be multiple phase configurations that are
/// executed sequentially.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct PhaseConfiguration {
/// The actions to run when the phase is executed.
#[serde(default)]
pub actions: Vec<String>,
/// The values to insert into the context when the phase is executed.
#[serde(default)]
pub values: BTreeMap<String, String>,
}
/// Executes the specified [phase] of the boot process.
/// The value [phase] should be a reference of a specific phase in the [PhasesConfiguration].
/// Any error from the actions is propagated into the [Result] and will interrupt further
/// execution of phase actions.
pub fn phase(context: Rc<SproutContext>, phase: &[PhaseConfiguration]) -> Result<()> {
for item in phase {
let mut context = context.fork();
// Insert the values into the context.
context.insert(&item.values);
let context = context.freeze();
// Execute all the actions in this phase configuration.
for action in item.actions.iter() {
actions::execute(context.clone(), action)
.context(format!("unable to execute action '{}'", action))?;
}
}
Ok(())
}

View File

@@ -0,0 +1,4 @@
/// timer: Platform timer support.
pub mod timer;
/// tpm: Platform TPM support.
pub mod tpm;

View File

@@ -0,0 +1,94 @@
// Referenced https://github.com/sheroz/tick_counter (MIT license) as a baseline.
// Architecturally modified to support UEFI and remove x86 (32-bit) support.
use std::time::Duration;
/// Support for aarch64 timers.
#[cfg(target_arch = "aarch64")]
pub mod aarch64;
/// Support for x86_64 timers.
#[cfg(target_arch = "x86_64")]
pub mod x86_64;
/// The tick frequency of the platform.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TickFrequency {
/// The platform provides the tick frequency.
Hardware(u64),
/// The tick frequency is measured internally.
Measured(u64, Duration),
}
impl TickFrequency {
/// Acquire the tick frequency reported by the platform.
fn ticks(&self) -> u64 {
match self {
TickFrequency::Hardware(frequency) => *frequency,
TickFrequency::Measured(frequency, _) => *frequency,
}
}
/// Calculate the nanoseconds represented by a tick.
fn nanos(&self) -> f64 {
1.0e9_f64 / (self.ticks() as f64)
}
/// Produce a duration from the provided elapsed `ticks` value.
fn duration(&self, ticks: u64) -> Duration {
let accuracy = self.nanos();
let nanos = ticks as f64 * accuracy;
Duration::from_nanos(nanos as u64)
}
}
/// Acquire the tick value reported by the platform.
fn arch_ticks() -> u64 {
#[cfg(target_arch = "aarch64")]
return aarch64::ticks();
#[cfg(target_arch = "x86_64")]
return x86_64::ticks();
}
/// Acquire the tick frequency reported by the platform.
fn arch_frequency() -> TickFrequency {
#[cfg(target_arch = "aarch64")]
let frequency = aarch64::frequency();
#[cfg(target_arch = "x86_64")]
let frequency = x86_64::frequency();
// If the frequency is 0, then something went very wrong and we should panic.
if frequency.ticks() == 0 {
panic!("timer frequency is zero");
}
frequency
}
/// Platform timer that allows measurement of the elapsed time.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PlatformTimer {
/// The start tick value.
start: u64,
/// The tick frequency of the platform.
frequency: TickFrequency,
}
impl PlatformTimer {
/// Start a platform timer at the current instant.
pub fn start() -> Self {
Self {
start: arch_ticks(),
frequency: arch_frequency(),
}
}
/// Measure the elapsed duration since the hardware started ticking upwards.
pub fn elapsed_since_lifetime(&self) -> Duration {
self.frequency.duration(arch_ticks())
}
/// Measure the elapsed duration since the timer was started.
pub fn elapsed_since_start(&self) -> Duration {
let duration = arch_ticks().wrapping_sub(self.start);
self.frequency.duration(duration)
}
}

View File

@@ -0,0 +1,33 @@
use crate::platform::timer::TickFrequency;
use std::arch::asm;
/// Reads the cntvct_el0 counter and returns the value.
pub fn ticks() -> u64 {
let counter: u64;
unsafe {
asm!("mrs x0, cntvct_el0", out("x0") counter);
}
counter
}
/// We can use the actual ticks value as our start value.
pub fn start() -> u64 {
ticks()
}
/// We can use the actual ticks value as our stop value.
pub fn stop() -> u64 {
ticks()
}
/// Our frequency is provided by cntfrq_el0 on the platform.
pub fn frequency() -> TickFrequency {
let frequency: u64;
unsafe {
asm!(
"mrs x0, cntfrq_el0",
out("x0") frequency
);
}
TickFrequency::Hardware(frequency)
}

View File

@@ -0,0 +1,66 @@
use crate::platform::timer::TickFrequency;
use core::arch::asm;
use std::time::Duration;
/// We will measure the frequency of the timer based on 1000 microseconds.
/// This will result in a call to BS->Stall(1000) in the end.
const MEASURE_FREQUENCY_DURATION: Duration = Duration::from_micros(1000);
/// Read the number of ticks from the platform timer.
pub fn ticks() -> u64 {
let mut eax: u32;
let mut edx: u32;
unsafe {
asm!("rdtsc", out("eax") eax, out("edx") edx);
}
(edx as u64) << 32 | eax as u64
}
/// Read the starting number of ticks from the platform timer.
pub fn start() -> u64 {
let rax: u64;
unsafe {
asm!(
"mfence",
"lfence",
"rdtsc",
"shl rdx, 32",
"or rax, rdx",
out("rax") rax
);
}
rax
}
/// Read the ending number of ticks from the platform timer.
pub fn stop() -> u64 {
let rax: u64;
unsafe {
asm!(
"rdtsc",
"lfence",
"shl rdx, 32",
"or rax, rdx",
out("rax") rax
);
}
rax
}
/// Measure the frequency of the platform timer.
fn measure_frequency() -> u64 {
let start = start();
uefi::boot::stall(MEASURE_FREQUENCY_DURATION);
let stop = stop();
let elapsed = stop.wrapping_sub(start) as f64;
(elapsed / MEASURE_FREQUENCY_DURATION.as_secs_f64()) as u64
}
/// Acquire the platform timer frequency.
/// On x86_64, this is slightly expensive, so it should be done once.
pub fn frequency() -> TickFrequency {
let frequency = measure_frequency();
TickFrequency::Measured(frequency, MEASURE_FREQUENCY_DURATION)
}

View File

@@ -0,0 +1,128 @@
use crate::utils;
use anyhow::{Context, Result};
use uefi::ResultExt;
use uefi::boot::ScopedProtocol;
use uefi::proto::tcg::PcrIndex;
use uefi::proto::tcg::v2::{PcrEventInputs, Tcg};
use uefi_raw::protocol::tcg::EventType;
use uefi_raw::protocol::tcg::v2::{Tcg2HashLogExtendEventFlags, Tcg2Protocol, Tcg2Version};
/// Represents the platform TPM.
pub struct PlatformTpm;
/// Represents an open TPM handle.
pub struct TpmProtocolHandle {
/// The version of the TPM protocol.
version: Tcg2Version,
/// The protocol itself.
protocol: ScopedProtocol<Tcg>,
}
impl TpmProtocolHandle {
/// Construct a new [TpmProtocolHandle] from the `version` and `protocol`.
pub fn new(version: Tcg2Version, protocol: ScopedProtocol<Tcg>) -> Self {
Self { version, protocol }
}
/// Access the version provided by the tcg2 protocol.
pub fn version(&self) -> Tcg2Version {
self.version
}
/// Access the protocol interface for tcg2.
pub fn protocol(&mut self) -> &mut ScopedProtocol<Tcg> {
&mut self.protocol
}
}
impl PlatformTpm {
/// The PCR for measuring the bootloader configuration into.
pub const PCR_BOOT_LOADER_CONFIG: PcrIndex = PcrIndex(5);
/// Acquire access to the TPM protocol handle, if possible.
/// Returns None if TPM is not available.
fn protocol() -> Result<Option<TpmProtocolHandle>> {
// Attempt to acquire the TCG2 protocol handle. If it's not available, return None.
let Some(handle) =
utils::find_handle(&Tcg2Protocol::GUID).context("unable to determine tpm presence")?
else {
return Ok(None);
};
// If we reach here, we've already validated that the handle
// implements the TCG2 protocol.
let mut protocol = uefi::boot::open_protocol_exclusive::<Tcg>(handle)
.context("unable to open tcg2 protocol")?;
// Acquire the capabilities of the TPM.
let capability = protocol
.get_capability()
.context("unable to get tcg2 boot service capability")?;
// If the TPM is not present, return None.
if !capability.tpm_present() {
return Ok(None);
}
// If the TPM is present, we need to determine the version of the TPM.
let version = capability.protocol_version;
// We have a TPM, so return the protocol version and the protocol handle.
Ok(Some(TpmProtocolHandle::new(version, protocol)))
}
/// Determines whether the platform TPM is present.
pub fn present() -> Result<bool> {
Ok(PlatformTpm::protocol()?.is_some())
}
/// Determine the number of active PCR banks on the TPM.
/// If no TPM is available, this will return zero.
pub fn active_pcr_banks() -> Result<u32> {
// Acquire access to the TPM protocol handle.
let Some(mut handle) = PlatformTpm::protocol()? else {
return Ok(0);
};
// Check if the TPM supports `GetActivePcrBanks`, and if it doesn't return zero.
if handle.version().major < 1 || handle.version().major == 1 && handle.version().minor < 1 {
return Ok(0);
}
// The safe wrapper for this function will decode the bitmap.
// Strictly speaking, it's not future-proof to re-encode that, but in practice it will work.
let banks = handle
.protocol()
.get_active_pcr_banks()
.context("unable to get active pcr banks")?;
// Return the number of active PCR banks.
Ok(banks.bits())
}
/// Log an event into the TPM pcr `pcr_index` with `buffer` as data. The `description`
/// is used to describe what the event is.
///
/// If a TPM is not available, this will do nothing.
pub fn log_event(pcr_index: PcrIndex, buffer: &[u8], description: &str) -> Result<()> {
// Acquire access to the TPM protocol handle.
let Some(mut handle) = PlatformTpm::protocol()? else {
return Ok(());
};
// Encode the description as UTF-8.
let description = description.as_bytes().to_vec();
// Construct an event input for the TPM.
let event = PcrEventInputs::new_in_box(pcr_index, EventType::IPL, &description)
.discard_errdata()
.context("unable to construct pcr event inputs")?;
// Log the event into the TPM.
handle
.protocol()
.hash_log_extend_event(Tcg2HashLogExtendEventFlags::empty(), buffer, &event)
.context("unable to log event to tpm")?;
Ok(())
}
}

11
crates/sprout/src/sbat.rs Normal file
View File

@@ -0,0 +1,11 @@
/// SBAT must be aligned by 512 bytes.
const SBAT_SIZE: usize = 512;
/// Define the SBAT attestation by including the sbat.csv file.
/// See this document for more details: https://github.com/rhboot/shim/blob/main/SBAT.md
/// NOTE: Alignment can't be enforced by an attribute, so instead the alignment is currently
/// enforced by the SBAT_SIZE being 512. The build.rs will ensure that the sbat.csv is padded.
/// This code will not compile if the sbat.csv is a different size than SBAT_SIZE.
#[used]
#[unsafe(link_section = ".sbat")]
static SBAT: [u8; SBAT_SIZE] = *include_bytes!(concat!(env!("OUT_DIR"), "/sbat.csv"));

View File

@@ -0,0 +1,2 @@
sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
sprout,1,Edera,sprout,{version},https://sprout.edera.dev
1 sbat 1 SBAT Version sbat 1 https://github.com/rhboot/shim/blob/main/SBAT.md
2 sprout 1 Edera sprout {version} https://sprout.edera.dev

View File

@@ -0,0 +1,14 @@
use crate::utils::variables::VariableController;
use anyhow::Result;
/// Secure boot services.
pub struct SecureBoot;
impl SecureBoot {
/// Checks if Secure Boot is enabled on the system.
/// This might fail if retrieving the variable fails in an irrecoverable way.
pub fn enabled() -> Result<bool> {
// The SecureBoot variable will tell us whether Secure Boot is enabled at all.
VariableController::GLOBAL.get_bool("SecureBoot")
}
}

View File

@@ -0,0 +1,27 @@
use anyhow::{Context, Result};
use std::os::uefi as uefi_std;
/// Initializes the UEFI environment.
///
/// This fetches the system table and current image handle from uefi_std and injects
/// them into the uefi crate.
pub fn init() -> Result<()> {
// Acquire the system table and image handle from the uefi_std environment.
let system_table = uefi_std::env::system_table();
let image_handle = uefi_std::env::image_handle();
// SAFETY: The UEFI variables above come from the Rust std.
// These variables are not-null and calling the uefi crates with these values is validated
// to be corrected by hand.
unsafe {
// Set the system table and image handle.
uefi::table::set_system_table(system_table.as_ptr().cast());
let handle = uefi::Handle::from_ptr(image_handle.as_ptr().cast())
.context("unable to resolve image handle")?;
uefi::boot::set_image_handle(handle);
}
// Initialize the uefi logger mechanism and other helpers.
uefi::helpers::init().context("unable to initialize uefi")?;
Ok(())
}

296
crates/sprout/src/utils.rs Normal file
View File

@@ -0,0 +1,296 @@
use anyhow::{Context, Result, bail};
use std::ops::Deref;
use uefi::boot::SearchType;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::text::{AllowShortcuts, DevicePathFromText, DisplayOnly};
use uefi::proto::device_path::{DevicePath, PoolDevicePath};
use uefi::proto::media::fs::SimpleFileSystem;
use uefi::proto::media::partition::PartitionInfo;
use uefi::{CString16, Guid, Handle};
use uefi_raw::Status;
/// Support code for the EFI framebuffer.
pub mod framebuffer;
/// Support code for the media loader protocol.
pub mod media_loader;
/// Support code for EFI variables.
pub mod variables;
/// Implements a version comparison algorithm according to the BLS specification.
pub mod vercmp;
/// Parses the input `path` as a [DevicePath].
/// Uses the [DevicePathFromText] protocol exclusively, and will fail if it cannot acquire the protocol.
pub fn text_to_device_path(path: &str) -> Result<PoolDevicePath> {
let path = CString16::try_from(path).context("unable to convert path to CString16")?;
let device_path_from_text = uefi::boot::open_protocol_exclusive::<DevicePathFromText>(
uefi::boot::get_handle_for_protocol::<DevicePathFromText>()
.context("no device path from text protocol")?,
)
.context("unable to open device path from text protocol")?;
device_path_from_text
.convert_text_to_device_path(&path)
.context("unable to convert text to device path")
}
/// Checks if a [CString16] contains a char `c`.
/// We need to call to_string() because CString16 doesn't support `contains` with a char.
fn cstring16_contains_char(string: &CString16, c: char) -> bool {
string.to_string().contains(c)
}
/// Grabs the root part of the `path`.
/// For example, given "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
/// it will give "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)"
pub fn device_path_root(path: &DevicePath) -> Result<String> {
let mut path = path
.node_iter()
.filter_map(|item| {
let item = item.to_string(DisplayOnly(false), AllowShortcuts(false));
if item
.as_ref()
.map(|item| cstring16_contains_char(item, '('))
.unwrap_or(false)
{
Some(item.unwrap_or_default())
} else {
None
}
})
.map(|item| item.to_string())
.collect::<Vec<_>>()
.join("/");
path.push('/');
Ok(path)
}
/// Grabs the part of the `path` after the root.
/// For example, given "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
/// it will give "\EFI\BOOT\BOOTX64.efi"
pub fn device_path_subpath(path: &DevicePath) -> Result<String> {
let path = path
.node_iter()
.filter_map(|item| {
let item = item.to_string(DisplayOnly(false), AllowShortcuts(false));
if item
.as_ref()
.map(|item| cstring16_contains_char(item, '('))
.unwrap_or(false)
{
None
} else {
Some(item.unwrap_or_default())
}
})
.map(|item| item.to_string())
.collect::<Vec<_>>()
.join("\\");
Ok(path)
}
/// Represents the components of a resolved path.
pub struct ResolvedPath {
/// The root path of the resolved path. This is the device itself.
/// For example, "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/"
pub root_path: Box<DevicePath>,
/// The subpath of the resolved path. This is the path to the file.
/// For example, "\EFI\BOOT\BOOTX64.efi"
pub sub_path: Box<DevicePath>,
/// The full path of the resolved path. This is the safest path to use.
/// For example, "PciRoot(0x0)/Pci(0x4,0x0)/NVMe(0x1,00-00-00-00-00-00-00-00)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/\EFI\BOOT\BOOTX64.efi"
pub full_path: Box<DevicePath>,
/// The handle of the filesystem containing the path.
/// This can be used to acquire a [SimpleFileSystem] protocol to read the file.
pub filesystem_handle: Handle,
}
impl ResolvedPath {
/// Read the file specified by this path into a buffer and return it.
pub fn read_file(&self) -> Result<Vec<u8>> {
let fs = uefi::boot::open_protocol_exclusive::<SimpleFileSystem>(self.filesystem_handle)
.context("unable to open filesystem protocol")?;
let mut fs = FileSystem::new(fs);
let path = self
.sub_path
.to_string(DisplayOnly(false), AllowShortcuts(false))?;
let content = fs.read(Path::new(&path));
content.context("unable to read file contents")
}
}
/// Resolve a path specified by `input` to its various components.
/// Uses `default_root_path` as the base root if one is not specified in the path.
/// Returns [ResolvedPath] which contains the resolved components.
pub fn resolve_path(default_root_path: Option<&DevicePath>, input: &str) -> Result<ResolvedPath> {
let mut path = text_to_device_path(input).context("unable to convert text to path")?;
let path_has_device = path
.node_iter()
.next()
.map(|it| {
it.to_string(DisplayOnly(false), AllowShortcuts(false))
.unwrap_or_default()
})
.map(|it| it.to_string().contains('('))
.unwrap_or(false);
if !path_has_device {
let mut input = input.to_string();
if !input.starts_with('\\') {
input.insert(0, '\\');
}
let default_root_path = default_root_path.context("unable to get default root path")?;
input.insert_str(
0,
device_path_root(default_root_path)
.context("unable to get loaded image device root")?
.as_str(),
);
path = text_to_device_path(input.as_str()).context("unable to convert text to path")?;
}
let path = path.to_boxed();
let root = device_path_root(path.as_ref()).context("unable to convert root to path")?;
let root_path = text_to_device_path(root.as_str())
.context("unable to convert root to path")?
.to_boxed();
let root_path = root_path.as_ref();
// locate_device_path modifies the path, so we need to clone it.
let root_path_modifiable = root_path.to_owned();
let handle = uefi::boot::locate_device_path::<SimpleFileSystem>(&mut &*root_path_modifiable)
.context("unable to locate filesystem device path")?;
let subpath = device_path_subpath(path.deref()).context("unable to get device subpath")?;
Ok(ResolvedPath {
root_path: root_path.to_boxed(),
sub_path: text_to_device_path(subpath.as_str())?.to_boxed(),
full_path: path,
filesystem_handle: handle,
})
}
/// Read the contents of a file at the location specified with the `input` path.
/// Internally, this uses [resolve_path] to resolve the path to its various components.
/// [resolve_path] is passed the `default_root_path` which should specify a base root.
///
/// This acquires exclusive protocol access to the [SimpleFileSystem] protocol of the resolved
/// filesystem handle, so care must be taken to call this function outside a scope with
/// the filesystem handle protocol acquired.
pub fn read_file_contents(default_root_path: Option<&DevicePath>, input: &str) -> Result<Vec<u8>> {
let resolved = resolve_path(default_root_path, input)?;
resolved.read_file()
}
/// Filter a string-like Option `input` such that an empty string is [None].
pub fn empty_is_none<T: AsRef<str>>(input: Option<T>) -> Option<T> {
input.filter(|input| !input.as_ref().is_empty())
}
/// Combine a sequence of strings into a single string, separated by spaces, ignoring empty strings.
pub fn combine_options<T: AsRef<str>>(options: impl Iterator<Item = T>) -> String {
options
.flat_map(|item| empty_is_none(Some(item)))
.map(|item| item.as_ref().to_string())
.collect::<Vec<_>>()
.join(" ")
}
/// Produce a unique hash for the input.
/// This uses SHA-256, which is unique enough but relatively short.
pub fn unique_hash(input: &str) -> String {
sha256::digest(input.as_bytes())
}
/// Represents the type of partition GUID that can be retrieved.
#[derive(PartialEq, Eq)]
pub enum PartitionGuidForm {
/// The partition GUID is the unique partition GUID.
Partition,
/// The partition GUID is the partition type GUID.
PartitionType,
}
/// Retrieve the partition / partition type GUID of the device root `path`.
/// This only works on GPT partitions. If the root is not a GPT partition, None is returned.
/// If the GUID is all zeros, this will return None.
pub fn partition_guid(path: &DevicePath, form: PartitionGuidForm) -> Result<Option<Guid>> {
// Clone the path so we can pass it to the UEFI stack.
let path = path.to_boxed();
let result = uefi::boot::locate_device_path::<PartitionInfo>(&mut &*path);
let handle = match result {
Ok(handle) => Ok(Some(handle)),
Err(error) => {
// If the error is NOT_FOUND or UNSUPPORTED, we can return None.
// These are non-fatal errors.
if error.status() == Status::NOT_FOUND || error.status() == Status::UNSUPPORTED {
Ok(None)
} else {
Err(error)
}
}
}
.context("unable to locate device path")?;
// If we have the handle, we can try to open the partition info protocol.
if let Some(handle) = handle {
// Open the partition info protocol.
let partition_info = uefi::boot::open_protocol_exclusive::<PartitionInfo>(handle)
.context("unable to open partition info protocol")?;
// Find the unique partition GUID.
// If this is not a GPT partition, this will produce None.
Ok(partition_info
.gpt_partition_entry()
.map(|entry| match form {
// Match the form of the partition GUID.
PartitionGuidForm::Partition => entry.unique_partition_guid,
PartitionGuidForm::PartitionType => entry.partition_type_guid.0,
})
.filter(|guid| !guid.is_zero()))
} else {
Ok(None)
}
}
/// Find a handle that provides the specified `protocol`.
pub fn find_handle(protocol: &Guid) -> Result<Option<Handle>> {
// Locate the requested protocol handle.
match uefi::boot::locate_handle_buffer(SearchType::ByProtocol(protocol)) {
// If a handle is found, the protocol is available.
Ok(handles) => Ok(if handles.is_empty() {
None
} else {
Some(handles[0])
}),
// If an error occurs, check if it is because the protocol is not available.
// If so, return false. Otherwise, return the error.
Err(error) => {
if error.status() == Status::NOT_FOUND {
Ok(None)
} else {
Err(error).context("unable to determine if the protocol is available")
}
}
}
}
/// Convert a byte slice into a CString16.
pub fn utf16_bytes_to_cstring16(bytes: &[u8]) -> Result<CString16> {
// Validate the input bytes are the right length.
if !bytes.len().is_multiple_of(2) {
bail!("utf16 bytes must be a multiple of 2");
}
// Convert the bytes to UTF-16 data.
let data = bytes
// Chunk everything into two bytes.
.chunks_exact(2)
// Reinterpret the bytes as u16 little-endian.
.map(|chunk| u16::from_le_bytes([chunk[0], chunk[1]]))
// Collect the result into a vector.
.collect::<Vec<_>>();
CString16::try_from(data).context("unable to convert utf16 bytes to CString16")
}

View File

@@ -0,0 +1,56 @@
use anyhow::{Context, Result};
use uefi::proto::console::gop::{BltOp, BltPixel, BltRegion, GraphicsOutput};
/// Represents the EFI framebuffer.
pub struct Framebuffer {
/// The width of the framebuffer in pixels.
width: usize,
/// The height of the framebuffer in pixels.
height: usize,
/// The pixels of the framebuffer.
pixels: Vec<BltPixel>,
}
impl Framebuffer {
/// Creates a new framebuffer of the specified `width` and `height`.
pub fn new(width: usize, height: usize) -> Result<Self> {
// Verify that the size is valid during multiplication.
let size = width
.checked_mul(height)
.context("framebuffer size overflow")?;
// Initialize the pixel buffer with black pixels, with the verified size.
let pixels = vec![BltPixel::new(0, 0, 0); size];
Ok(Framebuffer {
width,
height,
pixels,
})
}
/// Mutably acquires a pixel of the framebuffer at the specified `x` and `y` coordinate.
pub fn pixel(&mut self, x: usize, y: usize) -> Option<&mut BltPixel> {
// Verify that the coordinates are within the bounds of the framebuffer.
if x >= self.width || y >= self.height {
return None;
}
// Calculate the index of the pixel safely, returning None if it overflows.
let index = y.checked_mul(self.width)?.checked_add(x)?;
// Return the pixel at the index. If the index is out of bounds, this will return None.
self.pixels.get_mut(index)
}
/// Blit the framebuffer to the specified `gop` [GraphicsOutput].
pub fn blit(&self, gop: &mut GraphicsOutput) -> Result<()> {
gop.blt(BltOp::BufferToVideo {
buffer: &self.pixels,
src: BltRegion::Full,
dest: (0, 0),
dims: (self.width, self.height),
})
.context("unable to blit framebuffer")?;
Ok(())
}
}

View File

@@ -0,0 +1,276 @@
use anyhow::{Context, Result, bail};
use std::ffi::c_void;
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::build::DevicePathBuilder;
use uefi::proto::device_path::build::media::Vendor;
use uefi::proto::media::load_file::LoadFile2;
use uefi::{Guid, Handle};
use uefi_raw::protocol::device_path::DevicePathProtocol;
use uefi_raw::protocol::media::LoadFile2Protocol;
use uefi_raw::{Boolean, Status};
pub mod constants;
/// The media loader protocol.
#[derive(Debug)]
#[repr(C)]
struct MediaLoaderProtocol {
/// This is the standard EFI LoadFile2 protocol.
pub load_file: unsafe extern "efiapi" fn(
this: *mut MediaLoaderProtocol,
file_path: *const DevicePathProtocol,
boot_policy: Boolean,
buffer_size: *mut usize,
buffer: *mut c_void,
) -> Status,
/// A pointer to a Box<[u8]> containing the data to load.
pub address: *mut c_void,
/// The length of the data to load.
pub length: usize,
}
/// Represents a media loader which has been registered in the UEFI stack.
/// You MUST call [MediaLoaderHandle::unregister] when ready to unregister.
/// [Drop] is not implemented for this type.
pub struct MediaLoaderHandle {
/// The handle of the media loader in the UEFI stack.
handle: Handle,
/// The protocol interface pointer.
protocol: *mut MediaLoaderProtocol,
/// The device path pointer.
path: *mut DevicePath,
}
impl MediaLoaderHandle {
/// The behavior of this function is derived from how Linux calls it.
///
/// Linux calls this function by first passing a NULL `buffer`.
/// We must set the size of the buffer it should allocate in `buffer_size`.
/// The next call will pass a buffer of the right size, and we should copy
/// data into that buffer, checking whether it is safe to copy based on
/// the buffer size.
///
/// SAFETY: `this.address` and `this.length` are set by leaking a Box<[u8]>, so we can
/// be sure their pointers are valid when this is called. The caller must call this function
/// while inside UEFI boot services to ensure pointers are valid. Copying to `buffer` is
/// assumed valid because the caller must ensure `buffer` is valid by function contract.
unsafe extern "efiapi" fn load_file(
this: *mut MediaLoaderProtocol,
file_path: *const DevicePathProtocol,
boot_policy: Boolean,
buffer_size: *mut usize,
buffer: *mut c_void,
) -> Status {
// Check if the pointers are non-null first.
if this.is_null() || buffer_size.is_null() || file_path.is_null() {
return Status::INVALID_PARAMETER;
}
// Boot policy must not be true, and if it is, that is special behavior that is irrelevant
// for the media loader concept.
if boot_policy == Boolean::TRUE {
return Status::UNSUPPORTED;
}
// SAFETY: Validated as safe because this is checked to be non-null. It is the caller's
// responsibility to ensure that the right pointer is passed for [this].
unsafe {
// Check if the length and address are valid.
if (*this).length == 0 || (*this).address.is_null() {
return Status::NOT_FOUND;
}
// Check if the buffer is large enough.
// If it is not, we need to set the buffer size to the length of the data.
// This is the way that Linux calls this function, to check the size to allocate
// for the buffer that holds the data.
if buffer.is_null() || *buffer_size < (*this).length {
*buffer_size = (*this).length;
return Status::BUFFER_TOO_SMALL;
}
// Copy the data into the buffer.
buffer.copy_from((*this).address, (*this).length);
// Set the buffer size to the length of the data.
*buffer_size = (*this).length;
}
// We've successfully loaded the data.
Status::SUCCESS
}
/// Creates a new device path for the media loader based on a vendor `guid`.
fn device_path(guid: Guid) -> Result<Box<DevicePath>> {
// The buffer for the device path.
let mut path = Vec::new();
// Build a device path for the media loader with a vendor-specific guid.
let path = DevicePathBuilder::with_vec(&mut path)
.push(&Vendor {
vendor_guid: guid,
vendor_defined_data: &[],
})
.context("unable to produce device path")?
.finalize()
.context("unable to produce device path")?;
// Convert the device path to a boxed device path.
// This is safer than dealing with a pooled device path.
Ok(path.to_boxed())
}
/// Checks if the media loader is already registered with the UEFI stack.
fn already_registered(guid: Guid) -> Result<bool> {
// Acquire the device path for the media loader.
let path = Self::device_path(guid)?;
let mut existing_path = path.as_ref();
// Locate the LoadFile2 protocol for the media loader based on the device path.
let result = uefi::boot::locate_device_path::<LoadFile2>(&mut existing_path);
// If the result is okay, the media loader is already registered.
if result.is_ok() {
return Ok(true);
} else if let Err(error) = result
&& error.status() != Status::NOT_FOUND
// If the error is not found, that means it's not registered.
{
bail!("unable to locate media loader device path: {}", error);
}
// The media loader is not registered.
Ok(false)
}
/// Registers the provided `data` with the UEFI stack as media loader.
/// This uses a special device path that other EFI programs will look at
/// to load the data from.
pub fn register(guid: Guid, data: Box<[u8]>) -> Result<MediaLoaderHandle> {
// Acquire the vendor device path for the media loader.
let path = Self::device_path(guid)?;
// Check if the media loader is already registered.
// If it is, we can't register it again safely.
if Self::already_registered(guid)? {
bail!("media loader already registered");
}
// Leak the device path to pass it to the UEFI stack.
let path = Box::leak(path);
// Install a protocol interface for the device path.
// This ensures it can be located by other EFI programs.
let primary_handle = unsafe {
uefi::boot::install_protocol_interface(
None,
&DevicePathProtocol::GUID,
path.as_ffi_ptr() as *mut c_void,
)
}
.context("unable to install media loader device path handle")?;
// Leak the data we need to pass to the UEFI stack.
let data = Box::leak(data);
// Allocate a new box for the protocol interface.
let protocol = Box::new(MediaLoaderProtocol {
load_file: Self::load_file,
address: data.as_ptr() as *mut _,
length: data.len(),
});
// Leak the protocol interface to pass it to the UEFI stack.
let protocol = Box::leak(protocol);
// Install a protocol interface for the load file protocol for the media loader protocol.
let secondary_handle = unsafe {
uefi::boot::install_protocol_interface(
Some(primary_handle),
&LoadFile2Protocol::GUID,
// The UEFI API expects an opaque pointer here.
protocol as *mut MediaLoaderProtocol as *mut c_void,
)
};
// If installing the second protocol interface failed, we need to clean up after ourselves.
if secondary_handle.is_err() {
// Uninstall the protocol interface for the device path protocol.
// SAFETY: If we have reached this point, we know that the protocol is registered.
// If this fails, we have no choice but to leak memory. The error will be shown
// to the user, so at least they can see it. In most cases, catching this error
// will exit, so leaking is safe.
unsafe {
uefi::boot::uninstall_protocol_interface(
primary_handle,
&DevicePathProtocol::GUID,
path.as_ffi_ptr() as *mut c_void,
)
.context(
"unable to uninstall media loader device path handle, this will leak memory",
)?;
}
// SAFETY: We know that the protocol is leaked, so we can safely take a reference to it.
let protocol = unsafe { Box::from_raw(protocol) };
// SAFETY: We know that the data is leaked, so we can safely take a reference to it.
let data = unsafe { Box::from_raw(data) };
// SAFETY: We know that the path is leaked, so we can safely take a reference to it.
let path = unsafe { Box::from_raw(path) };
// Drop all the allocations explicitly to clarify the lifetime.
drop(protocol);
drop(data);
drop(path);
}
// If installing the second protocol interface failed, this will return the error.
// We should have already cleaned up after ourselves, so this is safe.
secondary_handle.context("unable to install media loader load file handle")?;
// Return a handle to the media loader.
Ok(Self {
handle: primary_handle,
protocol,
path,
})
}
/// Unregisters a media loader from the UEFI stack.
/// This will free the memory allocated by the passed data.
pub fn unregister(self) -> Result<()> {
// SAFETY: We know that the media loader is registered if the handle is valid,
// so we can safely uninstall it.
// We should have allocated the pointers involved, so we can safely free them.
unsafe {
// Uninstall the protocol interface for the device path protocol.
uefi::boot::uninstall_protocol_interface(
self.handle,
&DevicePathProtocol::GUID,
self.path as *mut c_void,
)
.context("unable to uninstall media loader device path handle")?;
// Uninstall the protocol interface for the load file protocol.
uefi::boot::uninstall_protocol_interface(
self.handle,
&LoadFile2Protocol::GUID,
self.protocol as *mut _ as *mut c_void,
)
.context("unable to uninstall media loader load file handle")?;
// Retrieve a box for the device path and protocols.
let path = Box::from_raw(self.path);
let protocol = Box::from_raw(self.protocol);
// Retrieve a box for the data we passed in.
let slice =
std::ptr::slice_from_raw_parts_mut(protocol.address as *mut u8, protocol.length);
let data = Box::from_raw(slice);
// Drop all the allocations explicitly, as we don't want to leak them.
drop(path);
drop(protocol);
drop(data);
}
Ok(())
}
}

View File

@@ -0,0 +1,20 @@
/// These GUIDs are specific to Linux itself.
pub mod linux {
use uefi::{Guid, guid};
/// The device path GUID for the Linux EFI initrd.
pub const LINUX_EFI_INITRD_MEDIA_GUID: Guid = guid!("5568e427-68fc-4f3d-ac74-ca555231cc68");
}
/// These GUIDs were created by Edera to support Xen loading data
/// from Sprout and other EFI bootloaders.
pub mod xen {
use uefi::{Guid, guid};
/// The device path GUID for the Xen EFI config.
pub const XEN_EFI_CONFIG_MEDIA_GUID: Guid = guid!("bf61f458-a28e-46cd-93d7-07dac5e8cd66");
/// The device path GUID for the Xen EFI kernel.
pub const XEN_EFI_KERNEL_MEDIA_GUID: Guid = guid!("4010c8bf-6ced-40f5-a53f-e820aee8f34b");
/// The device path GUID for the Xen EFI ramdisk.
pub const XEN_EFI_RAMDISK_MEDIA_GUID: Guid = guid!("5db1fd01-c3cb-4812-b2ba-8791e52d4a89");
}

View File

@@ -0,0 +1,152 @@
use crate::utils;
use anyhow::{Context, Result};
use log::warn;
use uefi::{CString16, guid};
use uefi_raw::Status;
use uefi_raw::table::runtime::{VariableAttributes, VariableVendor};
/// The classification of a variable.
/// This is an abstraction over various variable attributes.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum VariableClass {
/// The variable is available in Boot Services and Runtime Services and is not persistent.
BootAndRuntimeTemporary,
}
impl VariableClass {
/// The [VariableAttributes] for this classification.
fn attributes(&self) -> VariableAttributes {
match self {
VariableClass::BootAndRuntimeTemporary => {
VariableAttributes::BOOTSERVICE_ACCESS | VariableAttributes::RUNTIME_ACCESS
}
}
}
}
/// Provides access to a particular set of vendor variables.
pub struct VariableController {
/// The GUID of the vendor.
vendor: VariableVendor,
}
impl VariableController {
/// Global variables.
pub const GLOBAL: VariableController = VariableController::new(VariableVendor(guid!(
"8be4df61-93ca-11d2-aa0d-00e098032b8c"
)));
/// Create a new [VariableController] for the `vendor`.
pub const fn new(vendor: VariableVendor) -> Self {
Self { vendor }
}
/// Convert `key` to a variable name as a CString16.
fn name(key: &str) -> Result<CString16> {
CString16::try_from(key).context("unable to convert variable name to CString16")
}
/// Retrieve the cstr16 value specified by the `key`.
/// Returns None if the value isn't set.
/// If the value is not decodable, we will return None and log a warning.
pub fn get_cstr16(&self, key: &str) -> Result<Option<String>> {
let name = Self::name(key)?;
// Retrieve the variable data, handling variable not existing as None.
match uefi::runtime::get_variable_boxed(&name, &self.vendor) {
Ok((data, _)) => {
// Try to decode UTF-16 bytes to a CString16.
match utils::utf16_bytes_to_cstring16(&data) {
Ok(value) => {
// We have a value, so return the UTF-8 value.
Ok(Some(value.to_string()))
}
Err(error) => {
// We encountered an error, so warn and return None.
warn!("efi variable '{}' is not valid UTF-16: {}", key, error);
Ok(None)
}
}
}
Err(error) => {
// If the variable does not exist, we will return None.
if error.status() == Status::NOT_FOUND {
Ok(None)
} else {
Err(error).with_context(|| format!("unable to get efi variable {}", key))
}
}
}
}
/// Retrieve a boolean value specified by the `key`.
pub fn get_bool(&self, key: &str) -> Result<bool> {
let name = Self::name(key)?;
// Retrieve the variable data, handling variable not existing as false.
match uefi::runtime::get_variable_boxed(&name, &self.vendor) {
Ok((data, _)) => {
// If the variable is zero-length, we treat it as false.
if data.is_empty() {
Ok(false)
} else {
// We treat the variable as true if the first byte is non-zero.
Ok(data[0] > 0)
}
}
Err(error) => {
// If the variable does not exist, we treat it as false.
if error.status() == Status::NOT_FOUND {
Ok(false)
} else {
Err(error).with_context(|| format!("unable to get efi variable {}", key))
}
}
}
}
/// Set a variable specified by `key` to `value`.
/// The variable `class` controls the attributes for the variable.
pub fn set(&self, key: &str, value: &[u8], class: VariableClass) -> Result<()> {
let name = Self::name(key)?;
uefi::runtime::set_variable(&name, &self.vendor, class.attributes(), value)
.with_context(|| format!("unable to set efi variable {}", key))?;
Ok(())
}
/// Set a variable specified by `key` to `value`, converting the value to
/// a [CString16]. The variable `class` controls the attributes for the variable.
pub fn set_cstr16(&self, key: &str, value: &str, class: VariableClass) -> Result<()> {
// Encode the value as a CString16 little endian.
let mut encoded = value
.encode_utf16()
.flat_map(|c| c.to_le_bytes())
.collect::<Vec<u8>>();
// Add a null terminator to the end of the value.
encoded.extend_from_slice(&[0, 0]);
self.set(key, &encoded, class)
}
/// Set a boolean variable specified by `key` to `value`, converting the value.
/// The variable `class` controls the attributes for the variable.
pub fn set_bool(&self, key: &str, value: bool, class: VariableClass) -> Result<()> {
self.set(key, &[value as u8], class)
}
/// Set the u64 little-endian variable specified by `key` to `value`.
/// The variable `class` controls the attributes for the variable.
pub fn set_u64le(&self, key: &str, value: u64, class: VariableClass) -> Result<()> {
self.set(key, &value.to_le_bytes(), class)
}
pub fn remove(&self, key: &str) -> Result<()> {
let name = Self::name(key)?;
// Delete the variable from UEFI.
uefi::runtime::delete_variable(&name, &self.vendor)
.with_context(|| format!("unable to remove efi variable {}", key))
}
}

View File

@@ -0,0 +1,184 @@
use std::cmp::Ordering;
use std::iter::Peekable;
/// Handles single character advancement and comparison.
macro_rules! handle_single_char {
($ca: expr, $cb:expr, $a_chars:expr, $b_chars:expr, $c:expr) => {
match ($ca == $c, $cb == $c) {
(true, false) => return Ordering::Less,
(false, true) => return Ordering::Greater,
(true, true) => {
$a_chars.next();
$b_chars.next();
continue;
}
_ => {}
}
};
}
/// Compares two strings using the BLS version comparison specification.
/// Handles optional values as well by comparing only if both are specified.
pub fn compare_versions_optional(a: Option<&str>, b: Option<&str>) -> Ordering {
match (a, b) {
// If both have values, compare them.
(Some(a), Some(b)) => compare_versions(a, b),
// If the second value is None, return that it is less than the first.
(Some(_a), None) => Ordering::Less,
// If the first value is None, return that it is greater than the second.
(None, Some(_b)) => Ordering::Greater,
// If both values are None, return that they are equal.
(None, None) => Ordering::Equal,
}
}
/// Compares two strings using the BLS version comparison specification.
/// See: https://uapi-group.org/specifications/specs/version_format_specification/
pub fn compare_versions(a: &str, b: &str) -> Ordering {
// Acquire a peekable iterator for each string.
let mut a_chars = a.chars().peekable();
let mut b_chars = b.chars().peekable();
// Loop until we have reached the end of one of the strings.
loop {
// Skip invalid characters in both strings.
skip_invalid(&mut a_chars);
skip_invalid(&mut b_chars);
// Check if either string has ended.
match (a_chars.peek(), b_chars.peek()) {
// No more characters in either string.
(None, None) => return Ordering::Equal,
// One string has ended, the other hasn't.
(None, Some(_)) => return Ordering::Less,
(Some(_), None) => return Ordering::Greater,
// Both strings have characters left.
(Some(&ca), Some(&cb)) => {
// Handle the ~ character.
handle_single_char!(ca, cb, a_chars, b_chars, '~');
// Handle '-' character.
handle_single_char!(ca, cb, a_chars, b_chars, '-');
// Handle the '^' character.
handle_single_char!(ca, cb, a_chars, b_chars, '^');
// Handle the '.' character.
handle_single_char!(ca, cb, a_chars, b_chars, '.');
// Handle digits with numerical comparison.
// We key off of the A character being a digit intentionally as we presume
// this indicates it will be the same at this position.
if ca.is_ascii_digit() || cb.is_ascii_digit() {
let result = compare_numeric(&mut a_chars, &mut b_chars);
if result != Ordering::Equal {
return result;
}
continue;
}
// Handle letters with alphabetical comparison.
// We key off of the A character being alphabetical intentionally as we presume
// this indicates it will be the same at this position.
if ca.is_ascii_alphabetic() || cb.is_ascii_alphabetic() {
let result = compare_alphabetic(&mut a_chars, &mut b_chars);
if result != Ordering::Equal {
return result;
}
continue;
}
}
}
}
}
/// Skips characters that are not in the valid character set.
fn skip_invalid<I: Iterator<Item = char>>(iter: &mut Peekable<I>) {
while let Some(&c) = iter.peek() {
if is_valid_char(c) {
break;
}
iter.next();
}
}
/// Checks if a character is in the valid character set for comparison.
fn is_valid_char(c: char) -> bool {
matches!(c, 'a'..='z' | 'A'..='Z' | '0'..='9' | '-' | '.' | '~' | '^')
}
/// Compares numerical prefixes by extracting numbers.
fn compare_numeric<I: Iterator<Item = char>>(
iter_a: &mut Peekable<I>,
iter_b: &mut Peekable<I>,
) -> Ordering {
let num_a = extract_number(iter_a);
let num_b = extract_number(iter_b);
num_a.cmp(&num_b)
}
/// Extracts a number from the iterator, skipping leading zeros.
fn extract_number<I: Iterator<Item = char>>(iter: &mut Peekable<I>) -> u64 {
// Skip leading zeros
while let Some(&'0') = iter.peek() {
iter.next();
}
let mut num = 0u64;
while let Some(&c) = iter.peek() {
if c.is_ascii_digit() {
iter.next();
num = num.saturating_mul(10).saturating_add(c as u64 - '0' as u64);
} else {
break;
}
}
num
}
/// Compares alphabetical prefixes
/// Capital letters compare lower than lowercase letters (B < a)
fn compare_alphabetic<I: Iterator<Item = char>>(
iter_a: &mut Peekable<I>,
iter_b: &mut Peekable<I>,
) -> Ordering {
loop {
return match (iter_a.peek(), iter_b.peek()) {
(Some(&ca), Some(&cb)) if ca.is_ascii_alphabetic() && cb.is_ascii_alphabetic() => {
if ca == cb {
// Same character, we should continue.
iter_a.next();
iter_b.next();
continue;
}
// Different characters found.
// All capital letters compare lower than lowercase letters.
match (ca.is_ascii_uppercase(), cb.is_ascii_uppercase()) {
(true, false) => Ordering::Less, // uppercase < lowercase
(false, true) => Ordering::Greater, // lowercase > uppercase
(true, true) => ca.cmp(&cb), // both are uppercase
(false, false) => ca.cmp(&cb), // both are lowercase
}
}
(Some(&ca), Some(_)) if ca.is_ascii_alphabetic() => {
// a has letters, b doesn't
Ordering::Greater
}
(Some(_), Some(&cb)) if cb.is_ascii_alphabetic() => {
// b has letters, a doesn't
Ordering::Less
}
(Some(&ca), None) if ca.is_ascii_alphabetic() => Ordering::Greater,
(None, Some(&cb)) if cb.is_ascii_alphabetic() => Ordering::Less,
_ => Ordering::Equal,
};
}
}