21 Commits

Author SHA1 Message Date
6f60a279c3 sprout: version 0.0.14 2025-10-28 01:47:15 -04:00
2e66d8c72e chore(docs): update readme with secure boot notes and roadmap items 2025-10-28 01:43:07 -04:00
86e08c2400 fix(doc/extractors/filesystem-device-match): the extractor will error if no criteria is provided 2025-10-28 00:19:38 -04:00
852823e2eb chore(doc/bls/entry): clarify why char::is_whitespace is used despite newline matching 2025-10-28 00:12:16 -04:00
734ab84054 chore(doc/context): clarify context finalization limit error message 2025-10-28 00:10:22 -04:00
c8a3408fdd fix(extractors/filesystem-device-match): clarify when to use fallback for empty criteria 2025-10-28 00:09:11 -04:00
deeda650a7 fix(autoconfigure/linux): remove debug line 2025-10-28 00:06:02 -04:00
268a2cb28b fix(media-loader): improve safety in the event protocol interface install fails 2025-10-27 23:56:12 -04:00
0b6523906d fix(doc): filesystem-device-match will not return a filesystem when criteria is not provided 2025-10-27 23:39:55 -04:00
3acd0ec7d8 chore(doc): document media loader safety 2025-10-27 23:24:35 -04:00
fe593efa8c chore(autoconfigure/docs): clarify why we append / to a device root 2025-10-27 23:15:14 -04:00
3058abab23 fix(menu): check for timeout duration overflow 2025-10-27 23:10:05 -04:00
5df717de6d chore(filesystem-device-match): extract partition uuid fetch to function 2025-10-27 23:05:57 -04:00
011e133455 chore(autoconfigure-linux): clarify variable shadowing for initramfs matching 2025-10-27 23:00:55 -04:00
ccd1a8f498 chore(menu): clarify that we do not need to free the key event 2025-10-27 22:59:00 -04:00
527ce4b1b4 sprout: version 0.0.13 2025-10-27 22:44:21 -04:00
ebd3c07bf5 fix(autoconfigure): reinject values after configuration changes 2025-10-27 22:43:37 -04:00
e8b7b967fa chore(docs): change windows setup guide to use autoconfiguration 2025-10-27 21:36:48 -04:00
2bf4013938 feat(autoconfigure): improved linux support and windows support 2025-10-27 19:47:21 -04:00
6819e55e23 Merge pull request #19 from edera-dev/dependabot/docker/docker-updates-d0b0844295
chore(deps): bump rustlang/rust from `141e9a7` to `7cba2ed` in the docker-updates group
2025-10-27 19:03:00 -04:00
dependabot[bot]
3ffda86544 chore(deps): bump rustlang/rust in the docker-updates group
Bumps the docker-updates group with 1 update: rustlang/rust.


Updates `rustlang/rust` from `141e9a7` to `7cba2ed`

---
updated-dependencies:
- dependency-name: rustlang/rust
  dependency-version: nightly-alpine
  dependency-type: direct:production
  dependency-group: docker-updates
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-27 12:48:29 +00:00
16 changed files with 246 additions and 86 deletions

2
Cargo.lock generated
View File

@@ -116,7 +116,7 @@ dependencies = [
[[package]]
name = "edera-sprout"
version = "0.0.12"
version = "0.0.14"
dependencies = [
"anyhow",
"image",

View File

@@ -2,7 +2,7 @@
name = "edera-sprout"
description = "Modern UEFI bootloader"
license = "Apache-2.0"
version = "0.0.12"
version = "0.0.14"
homepage = "https://sprout.edera.dev"
repository = "https://github.com/edera-dev/sprout"
edition = "2024"

View File

@@ -2,7 +2,7 @@
ARG RUST_PROFILE=release
ARG RUST_TARGET_SUBDIR=release
FROM --platform=$BUILDPLATFORM rustlang/rust:nightly-alpine@sha256:141e9a7f13f77237dd4d462364c3a1b21cb8a6791d8924c409573e77b788af5e AS build
FROM --platform=$BUILDPLATFORM rustlang/rust:nightly-alpine@sha256:7cba2edabb6ba0e92cd806cd1e0acae99d50f63e5b9c9ad842766d13c896d68c AS build
RUN apk --no-cache add musl-dev busybox-static
ARG RUST_PROFILE
RUN adduser -S -s /bin/sh build

View File

@@ -18,6 +18,9 @@ existing UEFI bootloader or booted by the hardware directly.
Sprout is licensed under Apache 2.0 and is open to modifications and contributions.
**IMPORTANT WARNING**: Sprout does not support UEFI Secure Boot yet.
See [this issue](https://github.com/edera-dev/sprout/issues/20) for updates.
## Background
At [Edera] we make compute isolation technology for a wide variety of environments, often ones we do not fully control.
@@ -55,7 +58,7 @@ The boot menu mechanism is very rudimentary.
### Current
- [x] Loadable driver support
- [x] [Bootloader specification (BLS)](https://uapi-group.org/specifications/specs/boot_loader_specification/) support
- [x] Basic [Bootloader specification (BLS)](https://uapi-group.org/specifications/specs/boot_loader_specification/) support
- [x] Chainload support
- [x] Linux boot support via EFI stub
- [x] Windows boot support via chainload
@@ -65,15 +68,18 @@ The boot menu mechanism is very rudimentary.
### Roadmap
- [ ] Full-featured boot menu
- [ ] Secure Boot support: work in progress
- [ ] UKI support: partial
- [ ] multiboot2 support
- [ ] Linux boot protocol (boot without EFI stub)
- [ ] [Bootloader interface support](https://github.com/edera-dev/sprout/issues/21)
- [ ] [BLS specification conformance](https://github.com/edera-dev/sprout/issues/2)
- [ ] [Full-featured boot menu](https://github.com/edera-dev/sprout/issues/1)
- [ ] [Secure Boot support](https://github.com/edera-dev/sprout/issues/20): work in progress
- [ ] [UKI support](https://github.com/edera-dev/sprout/issues/6): partial
- [ ] [multiboot2 support](https://github.com/edera-dev/sprout/issues/7)
- [ ] [Linux boot protocol (boot without EFI stub)](https://github.com/edera-dev/sprout/issues/7)
## Concepts
- drivers: loadable EFI modules that can add functionality to the EFI system.
- autoconfiguration: code that can automatically generate sprout.toml based on the EFI environment.
- actions: executable code with a configuration that can be run by various other sprout concepts.
- generators: code that can generate boot entries based on inputs or runtime code.
- extractors: code that can extract values from the EFI environment.

View File

@@ -33,15 +33,10 @@ Write the following file to `X:\sprout.toml`:
# sprout configuration: version 1
version = 1
# add a boot entry for booting Windows
# which will run the boot-windows action.
[entries.windows]
title = "Windows"
actions = ["boot-windows"]
# use the chainload action to boot the Windows bootloader.
[actions.boot-windows]
chainload.path = "\\EFI\\Microsoft\\Boot\\bootmgfw.efi"
# global options.
[options]
# enable autoconfiguration to detect Windows.
autoconfigure = true
```
## Step 4: Configure EFI Firmware to boot Sprout

View File

@@ -3,7 +3,7 @@ use crate::utils;
use crate::utils::media_loader::MediaLoaderHandle;
use crate::utils::media_loader::constants::linux::LINUX_EFI_INITRD_MEDIA_GUID;
use anyhow::{Context, Result, bail};
use log::{error, info};
use log::error;
use serde::{Deserialize, Serialize};
use std::rc::Rc;
use uefi::CString16;
@@ -69,8 +69,6 @@ pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfigurat
.context("unable to convert chainloader options to CString16")?,
);
info!("options: {}", options);
if options.num_bytes() > u32::MAX as usize {
bail!("chainloader options too large");
}
@@ -85,14 +83,17 @@ pub fn chainload(context: Rc<SproutContext>, configuration: &ChainloadConfigurat
options_holder = Some(options);
}
// Stamp the initrd path, if provided.
let initrd = configuration
.linux_initrd
.as_ref()
.map(|item| context.stamp(item));
// The initrd can be None or empty, so we need to collapse that into a single Option.
let initrd = utils::empty_is_none(configuration.linux_initrd.as_ref());
let initrd = utils::empty_is_none(initrd);
// If an initrd is provided, register it with the EFI stack.
let mut initrd_handle = None;
if let Some(linux_initrd) = initrd {
// Stamp the path to the initrd.
let linux_initrd = context.stamp(linux_initrd);
let content = utils::read_file_contents(context.root().loaded_image_path()?, &linux_initrd)
.context("unable to read linux initrd")?;
let handle =

View File

@@ -12,6 +12,9 @@ pub mod bls;
/// on BLS-enabled filesystems as it may make duplicate entries.
pub mod linux;
/// windows: autodetect and configure Windows boot configurations.
pub mod windows;
/// Generate a [RootConfiguration] based on the environment.
/// Intakes a `config` to use as the basis of the autoconfiguration.
pub fn autoconfigure(config: &mut RootConfiguration) -> Result<()> {
@@ -44,6 +47,10 @@ pub fn autoconfigure(config: &mut RootConfiguration) -> Result<()> {
linux::scan(&mut filesystem, &root, config)
.context("unable to scan for linux configurations")?;
}
// Always look for Windows configurations.
windows::scan(&mut filesystem, &root, config)
.context("unable to scan for windows configurations")?;
}
Ok(())

View File

@@ -31,7 +31,7 @@ pub fn scan(
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing slash to the root to ensure the path is valid.
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.

View File

@@ -23,7 +23,7 @@ const SCAN_LOCATIONS: &[&str] = &["/boot", "/"];
const KERNEL_PREFIXES: &[&str] = &["vmlinuz"];
/// Prefixes of initramfs files to match to.
const INITRAMFS_PREFIXES: &[&str] = &["initramfs", "initrd"];
const INITRAMFS_PREFIXES: &[&str] = &["initramfs", "initrd", "initrd.img"];
/// Pair of kernel and initramfs.
/// This is what scanning a directory is meant to find.
@@ -88,7 +88,7 @@ fn scan_directory(filesystem: &mut FileSystem, path: &str) -> Result<Vec<KernelP
// Find a matching initramfs, if any.
let mut initramfs_prefix_iter = INITRAMFS_PREFIXES.iter();
let initramfs = loop {
let matched_initramfs_path = loop {
let Some(prefix) = initramfs_prefix_iter.next() else {
break None;
};
@@ -111,7 +111,7 @@ fn scan_directory(filesystem: &mut FileSystem, path: &str) -> Result<Vec<KernelP
let mut kernel = path.clone();
kernel.push(Path::new(&item.file_name()));
let kernel = kernel.to_string();
let initramfs = initramfs.map(|initramfs| initramfs.to_string());
let initramfs = matched_initramfs_path.map(|initramfs_path| initramfs_path.to_string());
// Produce a kernel pair.
let pair = KernelPair { kernel, initramfs };
@@ -134,7 +134,7 @@ pub fn scan(
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing slash to the root to ensure the path is valid.
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
@@ -158,7 +158,7 @@ pub fn scan(
// Kernel pairs are detected, generate a list configuration for it.
let generator = ListConfiguration {
entry: EntryDeclaration {
title: "Boot Linux $kernel".to_string(),
title: "Boot Linux $name".to_string(),
actions: vec![chainload_action_name.clone()],
..Default::default()
},
@@ -166,8 +166,14 @@ pub fn scan(
.into_iter()
.map(|pair| {
BTreeMap::from_iter(vec![
("kernel".to_string(), pair.kernel),
("initrd".to_string(), pair.initramfs.unwrap_or_default()),
("name".to_string(), pair.kernel.clone()),
("kernel".to_string(), format!("{}{}", root, pair.kernel)),
(
"initrd".to_string(),
pair.initramfs
.map(|initramfs| format!("{}{}", root, initramfs))
.unwrap_or_default(),
),
])
})
.collect(),
@@ -194,9 +200,9 @@ pub fn scan(
// Note that we don't need an extra \\ in the paths here.
// The root already contains a trailing slash.
let chainload = ChainloadConfiguration {
path: format!("{}$kernel", root),
path: "$kernel".to_string(),
options: vec!["$linux-options".to_string()],
linux_initrd: Some(format!("{}$initrd", root)),
linux_initrd: Some("$initrd".to_string()),
};
// Insert the chainload action into the configuration.

View File

@@ -0,0 +1,80 @@
use crate::actions::ActionDeclaration;
use crate::actions::chainload::ChainloadConfiguration;
use crate::config::RootConfiguration;
use crate::entries::EntryDeclaration;
use crate::utils;
use anyhow::{Context, Result};
use uefi::CString16;
use uefi::fs::{FileSystem, Path};
use uefi::proto::device_path::DevicePath;
use uefi::proto::device_path::text::{AllowShortcuts, DisplayOnly};
/// The name prefix of the Windows chainload action that will be used to boot Windows.
const WINDOWS_CHAINLOAD_ACTION_PREFIX: &str = "windows-chainload-";
/// Windows boot manager path.
const BOOTMGR_FW_PATH: &str = "\\EFI\\Microsoft\\Boot\\bootmgfw.efi";
/// Scan the specified `filesystem` for Windows configurations.
pub fn scan(
filesystem: &mut FileSystem,
root: &DevicePath,
config: &mut RootConfiguration,
) -> Result<bool> {
// Convert the boot manager firmware path to a path.
let bootmgr_fw_path =
CString16::try_from(BOOTMGR_FW_PATH).context("unable to convert path to CString16")?;
let bootmgr_fw_path = Path::new(&bootmgr_fw_path);
// Check if the boot manager firmware path exists, if it doesn't, return false.
if !filesystem
.try_exists(bootmgr_fw_path)
.context("unable to check if bootmgr firmware path exists")?
{
return Ok(false);
}
// Convert the device path root to a string we can use in the configuration.
let mut root = root
.to_string(DisplayOnly(false), AllowShortcuts(false))
.context("unable to convert device root to string")?
.to_string();
// Add a trailing forward-slash to the root to ensure the device root is completed.
root.push('/');
// Generate a unique hash of the root path.
let root_unique_hash = utils::unique_hash(&root);
// Generate a unique name for the Windows chainload action.
let chainload_action_name = format!("{}{}", WINDOWS_CHAINLOAD_ACTION_PREFIX, root_unique_hash,);
// Generate an entry name for Windows.
let entry_name = format!("autoconfigure-windows-{}", root_unique_hash,);
// Create an entry for Windows and insert it into the configuration.
let entry = EntryDeclaration {
title: "Boot Windows".to_string(),
actions: vec![chainload_action_name.clone()],
values: Default::default(),
};
config.entries.insert(entry_name, entry);
// Generate a chainload configuration for Windows.
let chainload = ChainloadConfiguration {
path: format!("{}{}", root, bootmgr_fw_path),
options: vec![],
..Default::default()
};
// Insert the chainload action into the configuration.
config.actions.insert(
chainload_action_name,
ActionDeclaration {
chainload: Some(chainload),
..Default::default()
},
);
// We have a Windows boot entry, so return true to indicate something was found.
Ok(true)
}

View File

@@ -168,13 +168,13 @@ impl SproutContext {
let mut current_values = self.all_values();
// To ensure that there is no possible infinite loop, we need to check
// the number of iterations. If it exceeds 100, we bail.
// the number of iterations. If it exceeds CONTEXT_FINALIZE_ITERATION_LIMIT, we bail.
let mut iterations: usize = 0;
loop {
iterations += 1;
if iterations > CONTEXT_FINALIZE_ITERATION_LIMIT {
bail!("infinite loop detected in context finalization");
bail!("maximum number of replacement iterations reached while finalizing context");
}
let mut did_change = false;

View File

@@ -10,16 +10,17 @@ use uefi::proto::device_path::DevicePath;
use uefi::proto::media::file::{File, FileSystemVolumeLabel};
use uefi::proto::media::fs::SimpleFileSystem;
use uefi::proto::media::partition::PartitionInfo;
use uefi::{CString16, Guid};
use uefi::{CString16, Guid, Handle};
use uefi_raw::Status;
/// The filesystem device match extractor.
/// This extractor finds a filesystem using some search criteria and returns
/// the device root path that can concatenated with subpaths to access files
/// on a particular filesystem.
/// The fallback value can be used to provide a value if no match is found.
///
/// This function only requires all the criteria to match.
/// The fallback value can be used to provide a value if none is found.
/// This extractor requires all the criteria to match. If no criteria is provided,
/// an error is returned.
#[derive(Serialize, Deserialize, Debug, Default, Clone)]
pub struct FilesystemDeviceMatchExtractor {
/// Matches a filesystem that has the specified label.
@@ -40,6 +41,48 @@ pub struct FilesystemDeviceMatchExtractor {
pub fallback: Option<String>,
}
/// Represents the partition UUIDs for a filesystem.
struct PartitionIds {
/// The UUID of the partition.
partition_uuid: Guid,
/// The type UUID of the partition.
type_uuid: Guid,
}
/// Fetches the partition UUIDs for the specified filesystem handle.
fn fetch_partition_uuids(handle: Handle) -> Result<Option<PartitionIds>> {
// Open the partition info protocol for this handle.
let partition_info = uefi::boot::open_protocol_exclusive::<PartitionInfo>(handle);
match partition_info {
Ok(partition_info) => {
// GPT partitions have a unique partition GUID.
// MBR does not.
if let Some(gpt) = partition_info.gpt_partition_entry() {
let uuid = gpt.unique_partition_guid;
let type_uuid = gpt.partition_type_guid;
Ok(Some(PartitionIds {
partition_uuid: uuid,
type_uuid: type_uuid.0,
}))
} else {
Ok(None)
}
}
Err(error) => {
// If the filesystem does not have a partition, that is okay.
if error.status() == Status::NOT_FOUND || error.status() == Status::UNSUPPORTED {
Ok(None)
} else {
// We should still handle other errors gracefully.
Err(error).context("unable to open filesystem partition info")?;
unreachable!()
}
}
}
}
/// Extract a filesystem device path using the specified `context` and `extractor` configuration.
pub fn extract(
context: Rc<SproutContext>,
@@ -56,56 +99,28 @@ pub fn extract(
// Extract the partition info for this filesystem.
// There is no guarantee that the filesystem has a partition.
let partition_info = {
// Open the partition info protocol for this handle.
let partition_info = uefi::boot::open_protocol_exclusive::<PartitionInfo>(handle);
match partition_info {
Ok(partition_info) => {
// GPT partitions have a unique partition GUID.
// MBR does not.
if let Some(gpt) = partition_info.gpt_partition_entry() {
let uuid = gpt.unique_partition_guid;
let type_uuid = gpt.partition_type_guid;
Some((uuid, type_uuid.0))
} else {
None
}
}
Err(error) => {
// If the filesystem does not have a partition, that is okay.
if error.status() == Status::NOT_FOUND || error.status() == Status::UNSUPPORTED
{
None
} else {
// We should still handle other errors gracefully.
Err(error).context("unable to open filesystem partition info")?;
unreachable!()
}
}
}
};
let partition_info =
fetch_partition_uuids(handle).context("unable to fetch partition info")?;
// Check if the partition info matches partition uuid criteria.
if let Some((partition_uuid, _partition_type_guid)) = partition_info
if let Some(ref partition_info) = partition_info
&& let Some(ref has_partition_uuid) = extractor.has_partition_uuid
{
let parsed_uuid = Guid::from_str(has_partition_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-uuid: {}", e))?;
if partition_uuid != parsed_uuid {
if partition_info.partition_uuid != parsed_uuid {
continue;
}
has_match = true;
}
// Check if the partition info matches partition type uuid criteria.
if let Some((_partition_uuid, partition_type_guid)) = partition_info
if let Some(ref partition_info) = partition_info
&& let Some(ref has_partition_type_uuid) = extractor.has_partition_type_uuid
{
let parsed_uuid = Guid::from_str(has_partition_type_uuid)
.map_err(|e| anyhow!("unable to parse has-partition-type-uuid: {}", e))?;
if partition_type_guid != parsed_uuid {
if partition_info.type_uuid != parsed_uuid {
continue;
}
has_match = true;

View File

@@ -41,7 +41,8 @@ impl FromStr for BlsEntry {
continue;
}
// Split the line once by whitespace.
// Split the line once by whitespace. This technically includes newlines but since
// the lines iterator is used, there should never be a newline here.
let Some((key, value)) = line.split_once(char::is_whitespace) else {
continue;
};

View File

@@ -118,6 +118,9 @@ fn run() -> Result<()> {
// Extend the root context with the autoconfigured actions.
root.actions_mut().extend(config.actions);
// Insert any modified root values.
context.insert(&config.values);
}
// Refreeze the context to ensure that further operations can share the context.
@@ -248,6 +251,8 @@ fn main() -> Result<()> {
for (index, stack) in error.chain().enumerate() {
error!("[{}]: {}", index, stack);
}
// Sleep for 10 seconds to allow the user to read the error.
uefi::boot::stall(Duration::from_secs(10));
}
// Sprout doesn't necessarily guarantee anything was booted.

View File

@@ -40,8 +40,17 @@ fn read(input: &mut Input, timeout: &Duration) -> Result<MenuOperation> {
uefi::boot::create_event_ex(EventType::TIMER, Tpl::CALLBACK, None, None, None)
.context("unable to create timer event")?
};
// The timeout is in increments of 100 nanoseconds.
let trigger = TimerTrigger::Relative(timeout.as_nanos() as u64 / 100);
let timeout_hundred_nanos = timeout.as_nanos() / 100;
// Check if the timeout is too large to fit into an u64.
if timeout_hundred_nanos > u64::MAX as u128 {
bail!("timeout duration overflow");
}
// Set a timer to trigger after the specified duration.
let trigger = TimerTrigger::Relative(timeout_hundred_nanos as u64);
uefi::boot::set_timer(&timer_event, trigger).context("unable to set timeout timer")?;
let mut events = vec![timer_event, key_event];
@@ -50,6 +59,7 @@ fn read(input: &mut Input, timeout: &Duration) -> Result<MenuOperation> {
.context("unable to wait for event")?;
// Close the timer event that we acquired.
// We don't need to close the key event because it is owned globally.
if let Some(timer_event) = events.into_iter().next() {
uefi::boot::close_event(timer_event).context("unable to close timer event")?;
}

View File

@@ -51,6 +51,11 @@ impl MediaLoaderHandle {
/// The next call will pass a buffer of the right size, and we should copy
/// data into that buffer, checking whether it is safe to copy based on
/// the buffer size.
///
/// SAFETY: `this.address` and `this.length` are set by leaking a Box<[u8]>, so we can
/// be sure their pointers are valid when this is called. The caller must call this function
/// while inside UEFI boot services to ensure pointers are valid. Copying to `buffer` is
/// assumed valid because the caller must ensure `buffer` is valid by function contract.
unsafe extern "efiapi" fn load_file(
this: *mut MediaLoaderProtocol,
file_path: *const DevicePathProtocol,
@@ -155,7 +160,7 @@ impl MediaLoaderHandle {
// Install a protocol interface for the device path.
// This ensures it can be located by other EFI programs.
let mut handle = unsafe {
let primary_handle = unsafe {
uefi::boot::install_protocol_interface(
None,
&DevicePathProtocol::GUID,
@@ -178,25 +183,54 @@ impl MediaLoaderHandle {
let protocol = Box::leak(protocol);
// Install a protocol interface for the load file protocol for the media loader protocol.
handle = unsafe {
let secondary_handle = unsafe {
uefi::boot::install_protocol_interface(
Some(handle),
Some(primary_handle),
&LoadFile2Protocol::GUID,
protocol as *mut _ as *mut c_void,
// The UEFI API expects an opaque pointer here.
protocol as *mut MediaLoaderProtocol as *mut c_void,
)
}
.context("unable to install media loader load file handle")?;
};
// Check if the media loader is registered.
// If it is not, we can't continue safely because something went wrong.
if !Self::already_registered(guid)? {
bail!("media loader not registered when expected to be registered");
// If installing the second protocol interface failed, we need to clean up after ourselves.
if secondary_handle.is_err() {
// Uninstall the protocol interface for the device path protocol.
// SAFETY: If we have reached this point, we know that the protocol is registered.
// If this fails, we have no choice but to leak memory. The error will be shown
// to the user, so at least they can see it. In most cases, catching this error
// will exit, so leaking is safe.
unsafe {
uefi::boot::uninstall_protocol_interface(
primary_handle,
&DevicePathProtocol::GUID,
path.as_ffi_ptr() as *mut c_void,
)
.context(
"unable to uninstall media loader device path handle, this will leak memory",
)?;
}
// SAFETY: We know that the protocol is leaked, so we can safely take a reference to it.
let protocol = unsafe { Box::from_raw(protocol) };
// SAFETY: We know that the data is leaked, so we can safely take a reference to it.
let data = unsafe { Box::from_raw(data) };
// SAFETY: We know that the path is leaked, so we can safely take a reference to it.
let path = unsafe { Box::from_raw(path) };
// Drop all the allocations explicitly to clarify the lifetime.
drop(protocol);
drop(data);
drop(path);
}
// If installing the second protocol interface failed, this will return the error.
// We should have already cleaned up after ourselves, so this is safe.
secondary_handle.context("unable to install media loader load file handle")?;
// Return a handle to the media loader.
Ok(Self {
guid,
handle,
handle: primary_handle,
protocol,
path,
})