network: start work on NAT implementation

This commit is contained in:
Alex Zenla 2024-02-09 13:06:00 +00:00
parent e8a3eba57d
commit 360506bbdd
No known key found for this signature in database
GPG Key ID: 067B238899B51269
18 changed files with 483 additions and 1993 deletions

View File

@ -6,7 +6,6 @@ members = [
"libs/xen/xenclient",
"libs/advmac",
"libs/loopdev",
"libs/ipstack",
"shared",
"container",
"network",
@ -52,6 +51,8 @@ futures = "0.3.30"
ipnetwork = "0.20.0"
udp-stream = "0.0.11"
smoltcp = "0.11.0"
etherparse = "0.14.2"
async-trait = "0.1.77"
[workspace.dependencies.uuid]
version = "1.6.1"

View File

@ -1,47 +0,0 @@
# This package is from https://github.com/narrowlink/ipstack
# Mycelium maintains an in-tree version because we need to work at the ethernet layer
# rather than the standard tun layer of IP.
[package]
authors = ['Narrowlink <opensource@narrowlink.com>']
description = 'Asynchronous lightweight implementation of TCP/IP stack for Tun device'
name = "ipstack"
version = "0.0.3"
edition = "2021"
license = "Apache-2.0"
repository = 'https://github.com/narrowlink/ipstack'
# homepage = 'https://github.com/narrowlink/ipstack'
readme = "README.md"
[features]
default = []
log = ["tracing/log"]
[dependencies]
tokio = { version = "1.35", features = [
"sync",
"rt",
"time",
"io-util",
"macros",
], default-features = false }
etherparse = { version = "0.13", default-features = false }
thiserror = { version = "1.0", default-features = false }
tracing = { version = "0.1", default-features = false, features = [
"log",
], optional = true }
[dev-dependencies]
clap = { version = "4.4", features = ["derive"] }
udp-stream = { version = "0.0", default-features = false }
tokio = { version = "1.35", features = [
"rt-multi-thread",
], default-features = false }
#tun2.rs example
tun2 = { version = "1.0", features = ["async"] }
#tun_wintun.rs example
[target.'cfg(any(target_os = "linux", target_os = "macos"))'.dev-dependencies]
tun = { version = "0.6.1", features = ["async"], default-features = false }
[target.'cfg(target_os = "windows")'.dev-dependencies]
wintun = { version = "0.4", default-features = false }

View File

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,30 +0,0 @@
#[allow(dead_code)]
#[derive(thiserror::Error, Debug)]
pub enum IpStackError {
#[error("The transport protocol is not supported")]
UnsupportedTransportProtocol,
#[error("The packet is invalid")]
InvalidPacket,
#[error("Write error: {0}")]
PacketWriteError(etherparse::WriteError),
#[error("Invalid Tcp packet")]
InvalidTcpPacket,
#[error("IO error: {0}")]
IoError(#[from] std::io::Error),
#[error("Accept Error")]
AcceptError,
#[error("Send Error {0}")]
SendError(#[from] tokio::sync::mpsc::error::SendError<crate::stream::IpStackStream>),
}
impl From<IpStackError> for std::io::Error {
fn from(e: IpStackError) -> Self {
match e {
IpStackError::IoError(e) => e,
_ => std::io::Error::new(std::io::ErrorKind::Other, e),
}
}
}
pub type Result<T, E = IpStackError> = std::result::Result<T, E>;

View File

@ -1,194 +0,0 @@
pub use error::{IpStackError, Result};
use packet::{NetworkPacket, NetworkTuple};
use std::{
collections::{
hash_map::Entry::{Occupied, Vacant},
HashMap,
},
time::Duration,
};
use stream::IpStackStream;
use tokio::{
io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt},
select,
sync::mpsc::{self, UnboundedReceiver, UnboundedSender},
};
#[cfg(feature = "log")]
use tracing::{error, trace};
use crate::{
packet::IpStackPacketProtocol,
stream::{IpStackTcpStream, IpStackUdpStream, IpStackUnknownTransport},
};
mod error;
mod packet;
pub mod stream;
const DROP_TTL: u8 = 0;
#[cfg(unix)]
const TTL: u8 = 64;
#[cfg(windows)]
const TTL: u8 = 128;
#[cfg(unix)]
const TUN_FLAGS: [u8; 2] = [0x00, 0x00];
#[cfg(any(target_os = "linux", target_os = "android"))]
const TUN_PROTO_IP6: [u8; 2] = [0x86, 0xdd];
#[cfg(any(target_os = "linux", target_os = "android"))]
const TUN_PROTO_IP4: [u8; 2] = [0x08, 0x00];
#[cfg(any(target_os = "macos", target_os = "ios"))]
const TUN_PROTO_IP6: [u8; 2] = [0x00, 0x0A];
#[cfg(any(target_os = "macos", target_os = "ios"))]
const TUN_PROTO_IP4: [u8; 2] = [0x00, 0x02];
pub struct IpStackConfig {
pub mtu: u16,
pub packet_information: bool,
pub tcp_timeout: Duration,
pub udp_timeout: Duration,
}
impl Default for IpStackConfig {
fn default() -> Self {
IpStackConfig {
mtu: u16::MAX,
packet_information: false,
tcp_timeout: Duration::from_secs(60),
udp_timeout: Duration::from_secs(30),
}
}
}
impl IpStackConfig {
pub fn tcp_timeout(&mut self, timeout: Duration) {
self.tcp_timeout = timeout;
}
pub fn udp_timeout(&mut self, timeout: Duration) {
self.udp_timeout = timeout;
}
pub fn mtu(&mut self, mtu: u16) {
self.mtu = mtu;
}
pub fn packet_information(&mut self, packet_information: bool) {
self.packet_information = packet_information;
}
}
pub struct IpStack {
accept_receiver: UnboundedReceiver<IpStackStream>,
}
impl IpStack {
pub fn new<D>(config: IpStackConfig, mut device: D) -> IpStack
where
D: AsyncRead + AsyncWrite + std::marker::Unpin + std::marker::Send + 'static,
{
let (accept_sender, accept_receiver) = mpsc::unbounded_channel::<IpStackStream>();
tokio::spawn(async move {
let mut streams: HashMap<NetworkTuple, UnboundedSender<NetworkPacket>> = HashMap::new();
let mut buffer = [0u8; u16::MAX as usize];
let (pkt_sender, mut pkt_receiver) = mpsc::unbounded_channel::<NetworkPacket>();
loop {
// dbg!(streams.len());
select! {
Ok(n) = device.read(&mut buffer) => {
let offset = if config.packet_information && cfg!(unix) {4} else {0};
let Ok(packet) = NetworkPacket::parse(&buffer[offset..n]) else {
accept_sender.send(IpStackStream::UnknownNetwork(buffer[offset..n].to_vec()))?;
continue;
};
if let IpStackPacketProtocol::Unknown = packet.transport_protocol() {
accept_sender.send(IpStackStream::UnknownTransport(IpStackUnknownTransport::new(packet.src_addr().ip(),packet.dst_addr().ip(),packet.payload,&packet.ip,config.mtu,pkt_sender.clone())))?;
continue;
}
match streams.entry(packet.network_tuple()){
Occupied(entry) =>{
// let t = packet.transport_protocol();
if let Err(_x) = entry.get().send(packet){
#[cfg(feature = "log")]
trace!("{}", _x);
// match t{
// IpStackPacketProtocol::Tcp(_t) => {
// // dbg!(t.flags());
// }
// IpStackPacketProtocol::Udp => {
// // dbg!("udp");
// }
// IpStackPacketProtocol::Unknown => {
// // dbg!("unknown");
// }
// }
}
}
Vacant(entry) => {
match packet.transport_protocol(){
IpStackPacketProtocol::Tcp(h) => {
match IpStackTcpStream::new(packet.src_addr(),packet.dst_addr(),h, pkt_sender.clone(),config.mtu,config.tcp_timeout).await{
Ok(stream) => {
entry.insert(stream.stream_sender());
accept_sender.send(IpStackStream::Tcp(stream))?;
}
Err(_e) => {
#[cfg(feature = "log")]
error!("{}", _e);
}
}
}
IpStackPacketProtocol::Udp => {
let stream = IpStackUdpStream::new(packet.src_addr(),packet.dst_addr(),packet.payload, pkt_sender.clone(),config.mtu,config.udp_timeout);
entry.insert(stream.stream_sender());
accept_sender.send(IpStackStream::Udp(stream))?;
}
IpStackPacketProtocol::Unknown => {
unreachable!()
}
}
}
}
}
Some(packet) = pkt_receiver.recv() => {
if packet.ttl() == 0{
streams.remove(&packet.reverse_network_tuple());
continue;
}
#[allow(unused_mut)]
let Ok(mut packet_byte) = packet.to_bytes() else{
#[cfg(feature = "log")]
trace!("to_bytes error");
continue;
};
#[cfg(unix)]
if config.packet_information {
if packet.src_addr().is_ipv4(){
packet_byte.splice(0..0, [TUN_FLAGS, TUN_PROTO_IP4].concat());
} else{
packet_byte.splice(0..0, [TUN_FLAGS, TUN_PROTO_IP6].concat());
}
}
device.write_all(&packet_byte).await?;
// device.flush().await.unwrap();
}
}
}
#[allow(unreachable_code)]
Ok::<(), IpStackError>(())
});
IpStack { accept_receiver }
}
pub async fn accept(&mut self) -> Result<IpStackStream, IpStackError> {
if let Some(s) = self.accept_receiver.recv().await {
Ok(s)
} else {
Err(IpStackError::AcceptError)
}
}
}

View File

@ -1,214 +0,0 @@
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use etherparse::{Ethernet2Header, IpHeader, PacketHeaders, TcpHeader, UdpHeader, WriteError};
use crate::error::IpStackError;
#[derive(Eq, Hash, PartialEq, Debug)]
pub struct NetworkTuple {
pub src: SocketAddr,
pub dst: SocketAddr,
pub tcp: bool,
}
pub mod tcp_flags {
pub const CWR: u8 = 0b10000000;
pub const ECE: u8 = 0b01000000;
pub const URG: u8 = 0b00100000;
pub const ACK: u8 = 0b00010000;
pub const PSH: u8 = 0b00001000;
pub const RST: u8 = 0b00000100;
pub const SYN: u8 = 0b00000010;
pub const FIN: u8 = 0b00000001;
}
pub(crate) enum IpStackPacketProtocol {
Tcp(TcpPacket),
Unknown,
Udp,
}
pub(crate) enum TransportHeader {
Tcp(TcpHeader),
Udp(UdpHeader),
Unknown,
}
pub struct NetworkPacket {
pub(crate) ip: IpHeader,
pub(crate) transport: TransportHeader,
pub(crate) payload: Vec<u8>,
}
impl NetworkPacket {
pub fn parse(buf: &[u8]) -> Result<Self, IpStackError> {
let p = PacketHeaders::from_ethernet_slice(buf).map_err(|_| IpStackError::InvalidPacket)?;
let ip = p.ip.ok_or(IpStackError::InvalidPacket)?;
let transport = match p.transport {
Some(etherparse::TransportHeader::Tcp(h)) => TransportHeader::Tcp(h),
Some(etherparse::TransportHeader::Udp(u)) => TransportHeader::Udp(u),
_ => TransportHeader::Unknown,
};
let payload = if let TransportHeader::Unknown = transport {
buf[ip.header_len()..].to_vec()
} else {
p.payload.to_vec()
};
Ok(NetworkPacket {
ip,
transport,
payload,
})
}
pub(crate) fn transport_protocol(&self) -> IpStackPacketProtocol {
match self.transport {
TransportHeader::Udp(_) => IpStackPacketProtocol::Udp,
TransportHeader::Tcp(ref h) => IpStackPacketProtocol::Tcp(h.into()),
_ => IpStackPacketProtocol::Unknown,
}
}
pub fn src_addr(&self) -> SocketAddr {
let port = match &self.transport {
TransportHeader::Udp(udp) => udp.source_port,
TransportHeader::Tcp(tcp) => tcp.source_port,
_ => 0,
};
match &self.ip {
IpHeader::Version4(ip, _) => {
SocketAddr::new(IpAddr::V4(Ipv4Addr::from(ip.source)), port)
}
IpHeader::Version6(ip, _) => {
SocketAddr::new(IpAddr::V6(Ipv6Addr::from(ip.source)), port)
}
}
}
pub fn dst_addr(&self) -> SocketAddr {
let port = match &self.transport {
TransportHeader::Udp(udp) => udp.destination_port,
TransportHeader::Tcp(tcp) => tcp.destination_port,
_ => 0,
};
match &self.ip {
IpHeader::Version4(ip, _) => {
SocketAddr::new(IpAddr::V4(Ipv4Addr::from(ip.destination)), port)
}
IpHeader::Version6(ip, _) => {
SocketAddr::new(IpAddr::V6(Ipv6Addr::from(ip.destination)), port)
}
}
}
pub fn network_tuple(&self) -> NetworkTuple {
NetworkTuple {
src: self.src_addr(),
dst: self.dst_addr(),
tcp: matches!(self.transport, TransportHeader::Tcp(_)),
}
}
pub fn reverse_network_tuple(&self) -> NetworkTuple {
NetworkTuple {
src: self.dst_addr(),
dst: self.src_addr(),
tcp: matches!(self.transport, TransportHeader::Tcp(_)),
}
}
pub fn to_bytes(&self) -> Result<Vec<u8>, IpStackError> {
let mut buf = Vec::new();
let header = Ethernet2Header {
source: [255; 6],
destination: [255; 6],
ether_type: 0x0800,
};
header.write(&mut buf).map_err(IpStackError::IoError)?;
self.ip
.write(&mut buf)
.map_err(IpStackError::PacketWriteError)?;
match self.transport {
TransportHeader::Tcp(ref h) => h
.write(&mut buf)
.map_err(WriteError::from)
.map_err(IpStackError::PacketWriteError)?,
TransportHeader::Udp(ref h) => {
h.write(&mut buf).map_err(IpStackError::PacketWriteError)?
}
_ => {}
};
// self.transport
// .write(&mut buf)
// .map_err(IpStackError::PacketWriteError)?;
buf.extend_from_slice(&self.payload);
Ok(buf)
}
pub fn ttl(&self) -> u8 {
match &self.ip {
IpHeader::Version4(ip, _) => ip.time_to_live,
IpHeader::Version6(ip, _) => ip.hop_limit,
}
}
}
pub(super) struct TcpPacket {
header: TcpHeader,
}
impl TcpPacket {
pub fn inner(&self) -> &TcpHeader {
&self.header
}
pub fn flags(&self) -> u8 {
let inner = self.inner();
let mut flags = 0;
if inner.cwr {
flags |= tcp_flags::CWR;
}
if inner.ece {
flags |= tcp_flags::ECE;
}
if inner.urg {
flags |= tcp_flags::URG;
}
if inner.ack {
flags |= tcp_flags::ACK;
}
if inner.psh {
flags |= tcp_flags::PSH;
}
if inner.rst {
flags |= tcp_flags::RST;
}
if inner.syn {
flags |= tcp_flags::SYN;
}
if inner.fin {
flags |= tcp_flags::FIN;
}
flags
}
}
impl From<&TcpHeader> for TcpPacket {
fn from(header: &TcpHeader) -> Self {
TcpPacket {
header: header.clone(),
}
}
}
// pub struct UdpPacket {
// header: UdpHeader,
// }
// impl UdpPacket {
// pub fn inner(&self) -> &UdpHeader {
// &self.header
// }
// }
// impl From<&UdpHeader> for UdpPacket {
// fn from(header: &UdpHeader) -> Self {
// UdpPacket {
// header: header.clone(),
// }
// }
// }

View File

@ -1,46 +0,0 @@
use std::net::{SocketAddr, SocketAddrV4, SocketAddrV6};
pub use self::tcp::IpStackTcpStream;
pub use self::udp::IpStackUdpStream;
pub use self::unknown::IpStackUnknownTransport;
mod tcb;
mod tcp;
mod udp;
mod unknown;
pub enum IpStackStream {
Tcp(IpStackTcpStream),
Udp(IpStackUdpStream),
UnknownTransport(IpStackUnknownTransport),
UnknownNetwork(Vec<u8>),
}
impl IpStackStream {
pub fn local_addr(&self) -> SocketAddr {
match self {
IpStackStream::Tcp(tcp) => tcp.local_addr(),
IpStackStream::Udp(udp) => udp.local_addr(),
IpStackStream::UnknownNetwork(_) => {
SocketAddr::V4(SocketAddrV4::new(std::net::Ipv4Addr::new(0, 0, 0, 0), 0))
}
IpStackStream::UnknownTransport(unknown) => match unknown.src_addr() {
std::net::IpAddr::V4(addr) => SocketAddr::V4(SocketAddrV4::new(addr, 0)),
std::net::IpAddr::V6(addr) => SocketAddr::V6(SocketAddrV6::new(addr, 0, 0, 0)),
},
}
}
pub fn peer_addr(&self) -> SocketAddr {
match self {
IpStackStream::Tcp(tcp) => tcp.peer_addr(),
IpStackStream::Udp(udp) => udp.peer_addr(),
IpStackStream::UnknownNetwork(_) => {
SocketAddr::V4(SocketAddrV4::new(std::net::Ipv4Addr::new(0, 0, 0, 0), 0))
}
IpStackStream::UnknownTransport(unknown) => match unknown.dst_addr() {
std::net::IpAddr::V4(addr) => SocketAddr::V4(SocketAddrV4::new(addr, 0)),
std::net::IpAddr::V6(addr) => SocketAddr::V6(SocketAddrV6::new(addr, 0, 0, 0)),
},
}
}
}

View File

@ -1,234 +0,0 @@
use std::{
collections::BTreeMap,
pin::Pin,
time::{Duration, SystemTime},
};
use tokio::time::Sleep;
use crate::packet::TcpPacket;
const MAX_UNACK: u32 = 1024 * 16; // 16KB
const READ_BUFFER_SIZE: usize = 1024 * 16; // 16KB
#[derive(Clone, Debug)]
pub enum TcpState {
SynReceived(bool), // bool means if syn/ack is sent
Established,
FinWait1,
FinWait2(bool), // bool means waiting for ack
Closed,
}
#[derive(Clone, Debug)]
pub(super) enum PacketStatus {
WindowUpdate,
Invalid,
RetransmissionRequest,
NewPacket,
Ack,
KeepAlive,
}
pub(super) struct Tcb {
pub(super) seq: u32,
pub(super) retransmission: Option<u32>,
pub(super) ack: u32,
pub(super) last_ack: u32,
pub(super) timeout: Pin<Box<Sleep>>,
tcp_timeout: Duration,
recv_window: u16,
pub(super) send_window: u16,
state: TcpState,
pub(super) avg_send_window: (u64, u64),
pub(super) inflight_packets: Vec<InflightPacket>,
pub(super) unordered_packets: BTreeMap<u32, UnorderedPacket>,
}
impl Tcb {
pub(super) fn new(ack: u32, tcp_timeout: Duration) -> Tcb {
let seq = 100;
Tcb {
seq,
retransmission: None,
ack,
last_ack: seq,
tcp_timeout,
timeout: Box::pin(tokio::time::sleep_until(
tokio::time::Instant::now() + tcp_timeout,
)),
send_window: u16::MAX,
recv_window: 0,
state: TcpState::SynReceived(false),
avg_send_window: (1, 1),
inflight_packets: Vec::new(),
unordered_packets: BTreeMap::new(),
}
}
pub(super) fn add_inflight_packet(&mut self, seq: u32, buf: &[u8]) {
self.inflight_packets
.push(InflightPacket::new(seq, buf.to_vec()));
self.seq = self.seq.wrapping_add(buf.len() as u32);
}
pub(super) fn add_unordered_packet(&mut self, seq: u32, buf: &[u8]) {
if seq < self.ack {
return;
}
self.unordered_packets
.insert(seq, UnorderedPacket::new(buf.to_vec()));
}
pub(super) fn get_available_read_buffer_size(&self) -> usize {
READ_BUFFER_SIZE.saturating_sub(
self.unordered_packets
.iter()
.fold(0, |acc, (_, p)| acc + p.payload.len()),
)
}
pub(super) fn get_unordered_packets(&mut self) -> Option<Vec<u8>> {
// dbg!(self.ack);
// for (seq,_) in self.unordered_packets.iter() {
// dbg!(seq);
// }
self.unordered_packets
.remove(&self.ack)
.map(|p| p.payload.clone())
}
pub(super) fn add_seq_one(&mut self) {
self.seq = self.seq.wrapping_add(1);
}
pub(super) fn get_seq(&self) -> u32 {
self.seq
}
pub(super) fn add_ack(&mut self, add: u32) {
self.ack = self.ack.wrapping_add(add);
}
pub(super) fn get_ack(&self) -> u32 {
self.ack
}
pub(super) fn change_state(&mut self, state: TcpState) {
self.state = state;
}
pub(super) fn get_state(&self) -> &TcpState {
&self.state
}
pub(super) fn change_send_window(&mut self, window: u16) {
let avg_send_window = ((self.avg_send_window.0 * self.avg_send_window.1) + window as u64)
/ (self.avg_send_window.1 + 1);
self.avg_send_window.0 = avg_send_window;
self.avg_send_window.1 += 1;
self.send_window = window;
}
pub(super) fn get_send_window(&self) -> u16 {
self.send_window
}
pub(super) fn change_recv_window(&mut self, window: u16) {
self.recv_window = window;
}
pub(super) fn get_recv_window(&self) -> u16 {
self.recv_window
}
// #[inline(always)]
// pub(super) fn buffer_size(&self, payload_len: u16) -> u16 {
// match MAX_UNACK - self.inflight_packets.len() as u32 {
// // b if b.saturating_sub(payload_len as u32 + 64) != 0 => payload_len,
// // b if b < 128 && b >= 4 => (b / 2) as u16,
// // b if b < 4 => b as u16,
// // b => (b - 64) as u16,
// b if b >= payload_len as u32 * 2 && b > 0 => payload_len,
// b if b < 4 => b as u16,
// b => (b / 2) as u16,
// }
// }
pub(super) fn check_pkt_type(&self, incoming_packet: &TcpPacket, p: &[u8]) -> PacketStatus {
let received_ack_distance = self
.seq
.wrapping_sub(incoming_packet.inner().acknowledgment_number);
let current_ack_distance = self.seq.wrapping_sub(self.last_ack);
if received_ack_distance > current_ack_distance
|| (incoming_packet.inner().acknowledgment_number != self.seq
&& self
.seq
.saturating_sub(incoming_packet.inner().acknowledgment_number)
== 0)
{
PacketStatus::Invalid
} else if self.last_ack == incoming_packet.inner().acknowledgment_number {
if !p.is_empty() {
PacketStatus::NewPacket
} else if self.send_window == incoming_packet.inner().window_size
&& self.seq != self.last_ack
{
PacketStatus::RetransmissionRequest
} else if self.ack.wrapping_sub(1) == incoming_packet.inner().sequence_number {
PacketStatus::KeepAlive
} else {
PacketStatus::WindowUpdate
}
} else if self.last_ack < incoming_packet.inner().acknowledgment_number {
if !p.is_empty() {
PacketStatus::NewPacket
} else {
PacketStatus::Ack
}
} else {
PacketStatus::Invalid
}
}
pub(super) fn change_last_ack(&mut self, ack: u32) {
self.timeout
.as_mut()
.reset(tokio::time::Instant::now() + self.tcp_timeout);
let distance = ack.wrapping_sub(self.last_ack);
if matches!(self.state, TcpState::Established) {
if let Some(i) = self.inflight_packets.iter().position(|p| p.contains(ack)) {
let mut inflight_packet = self.inflight_packets.remove(i);
let distance = ack.wrapping_sub(inflight_packet.seq);
if (distance as usize) < inflight_packet.payload.len() {
inflight_packet.payload.drain(0..distance as usize);
inflight_packet.seq = ack;
self.inflight_packets.push(inflight_packet);
}
}
}
self.last_ack = self.last_ack.wrapping_add(distance);
}
pub fn is_send_buffer_full(&self) -> bool {
self.seq.wrapping_sub(self.last_ack) >= MAX_UNACK
}
}
pub struct InflightPacket {
pub seq: u32,
pub payload: Vec<u8>,
pub send_time: SystemTime,
}
impl InflightPacket {
fn new(seq: u32, payload: Vec<u8>) -> Self {
Self {
seq,
payload,
send_time: SystemTime::now(),
}
}
pub(crate) fn contains(&self, seq: u32) -> bool {
self.seq < seq && self.seq + self.payload.len() as u32 >= seq
}
}
pub struct UnorderedPacket {
pub payload: Vec<u8>,
pub recv_time: SystemTime,
}
impl UnorderedPacket {
pub(crate) fn new(payload: Vec<u8>) -> Self {
Self {
payload,
recv_time: SystemTime::now(),
}
}
}

View File

@ -1,509 +0,0 @@
use crate::{
error::IpStackError,
packet::{tcp_flags, IpStackPacketProtocol, TcpPacket, TransportHeader},
stream::tcb::{Tcb, TcpState},
DROP_TTL, TTL,
};
use etherparse::{Ipv4Extensions, Ipv4Header, Ipv6Extensions};
use std::{
cmp,
future::Future,
io::{Error, ErrorKind},
net::SocketAddr,
pin::Pin,
task::Waker,
time::Duration,
};
use tokio::{
io::{AsyncRead, AsyncWrite},
sync::{
mpsc::{self, UnboundedReceiver, UnboundedSender},
Notify,
},
};
#[cfg(feature = "log")]
use tracing::{trace, warn};
use crate::packet::NetworkPacket;
use super::tcb::PacketStatus;
pub struct IpStackTcpStream {
src_addr: SocketAddr,
dst_addr: SocketAddr,
stream_sender: UnboundedSender<NetworkPacket>,
stream_receiver: UnboundedReceiver<NetworkPacket>,
packet_sender: UnboundedSender<NetworkPacket>,
packet_to_send: Option<NetworkPacket>,
tcb: Tcb,
mtu: u16,
shutdown: Option<Notify>,
write_notify: Option<Waker>,
}
impl IpStackTcpStream {
pub(crate) async fn new(
src_addr: SocketAddr,
dst_addr: SocketAddr,
tcp: TcpPacket,
pkt_sender: UnboundedSender<NetworkPacket>,
mtu: u16,
tcp_timeout: Duration,
) -> Result<IpStackTcpStream, IpStackError> {
let (stream_sender, stream_receiver) = mpsc::unbounded_channel::<NetworkPacket>();
let mut stream = IpStackTcpStream {
src_addr,
dst_addr,
stream_sender,
stream_receiver,
packet_sender: pkt_sender.clone(),
packet_to_send: None,
tcb: Tcb::new(tcp.inner().sequence_number + 1, tcp_timeout),
mtu,
shutdown: None,
write_notify: None,
};
if !tcp.inner().syn {
pkt_sender
.send(stream.create_rev_packet(
tcp_flags::RST | tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?)
.map_err(|_| IpStackError::InvalidTcpPacket)?;
stream.tcb.change_state(TcpState::Closed);
}
Ok(stream)
}
pub(crate) fn stream_sender(&self) -> UnboundedSender<NetworkPacket> {
self.stream_sender.clone()
}
fn calculate_payload_len(&self, ip_header_size: u16, tcp_header_size: u16) -> u16 {
cmp::min(
self.tcb.get_send_window(),
self.mtu.saturating_sub(ip_header_size + tcp_header_size),
)
}
fn create_rev_packet(
&self,
flags: u8,
ttl: u8,
seq: Option<u32>,
mut payload: Vec<u8>,
) -> Result<NetworkPacket, Error> {
let mut tcp_header = etherparse::TcpHeader::new(
self.dst_addr.port(),
self.src_addr.port(),
seq.unwrap_or(self.tcb.get_seq()),
self.tcb.get_recv_window(),
);
tcp_header.acknowledgment_number = self.tcb.get_ack();
if flags & tcp_flags::SYN != 0 {
tcp_header.syn = true;
}
if flags & tcp_flags::ACK != 0 {
tcp_header.ack = true;
}
if flags & tcp_flags::RST != 0 {
tcp_header.rst = true;
}
if flags & tcp_flags::FIN != 0 {
tcp_header.fin = true;
}
if flags & tcp_flags::PSH != 0 {
tcp_header.psh = true;
}
let ip_header = match (self.dst_addr.ip(), self.src_addr.ip()) {
(std::net::IpAddr::V4(dst), std::net::IpAddr::V4(src)) => {
let mut ip_h = Ipv4Header::new(0, ttl, 6, dst.octets(), src.octets());
let payload_len =
self.calculate_payload_len(ip_h.header_len() as u16, tcp_header.header_len());
payload.truncate(payload_len as usize);
ip_h.payload_len = payload.len() as u16 + tcp_header.header_len();
ip_h.dont_fragment = true;
etherparse::IpHeader::Version4(ip_h, Ipv4Extensions::default())
}
(std::net::IpAddr::V6(dst), std::net::IpAddr::V6(src)) => {
let mut ip_h = etherparse::Ipv6Header {
traffic_class: 0,
flow_label: 0,
payload_length: 0,
next_header: 6,
hop_limit: ttl,
source: dst.octets(),
destination: src.octets(),
};
let payload_len =
self.calculate_payload_len(ip_h.header_len() as u16, tcp_header.header_len());
payload.truncate(payload_len as usize);
ip_h.payload_length = payload.len() as u16 + tcp_header.header_len();
etherparse::IpHeader::Version6(ip_h, Ipv6Extensions::default())
}
_ => unreachable!(),
};
match ip_header {
etherparse::IpHeader::Version4(ref ip_header, _) => {
tcp_header.checksum = tcp_header
.calc_checksum_ipv4(ip_header, &payload)
.map_err(|_e| Error::from(ErrorKind::InvalidInput))?;
}
etherparse::IpHeader::Version6(ref ip_header, _) => {
tcp_header.checksum = tcp_header
.calc_checksum_ipv6(ip_header, &payload)
.map_err(|_e| Error::from(ErrorKind::InvalidInput))?;
}
}
Ok(NetworkPacket {
ip: ip_header,
transport: TransportHeader::Tcp(tcp_header),
payload,
})
}
pub fn local_addr(&self) -> SocketAddr {
self.src_addr
}
pub fn peer_addr(&self) -> SocketAddr {
self.dst_addr
}
}
impl AsyncRead for IpStackTcpStream {
fn poll_read(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> std::task::Poll<std::io::Result<()>> {
loop {
if matches!(self.tcb.get_state(), TcpState::FinWait2(false)) {
self.packet_to_send =
Some(self.create_rev_packet(0, DROP_TTL, None, Vec::new())?);
self.tcb.change_state(TcpState::Closed);
return std::task::Poll::Ready(Ok(()));
}
let min = cmp::min(self.tcb.get_available_read_buffer_size() as u16, u16::MAX);
self.tcb.change_recv_window(min);
if matches!(
Pin::new(&mut self.tcb.timeout).poll(cx),
std::task::Poll::Ready(_)
) {
#[cfg(feature = "log")]
trace!("timeout reached for {:?}", self.dst_addr);
self.packet_sender
.send(self.create_rev_packet(
tcp_flags::RST | tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?)
.map_err(|_| ErrorKind::UnexpectedEof)?;
return std::task::Poll::Ready(Err(Error::from(ErrorKind::TimedOut)));
}
if matches!(self.tcb.get_state(), TcpState::SynReceived(false)) {
self.packet_to_send = Some(self.create_rev_packet(
tcp_flags::SYN | tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?);
self.tcb.add_seq_one();
self.tcb.change_state(TcpState::SynReceived(true));
}
if let Some(packet) = self.packet_to_send.take() {
self.packet_sender
.send(packet)
.map_err(|_| Error::from(ErrorKind::UnexpectedEof))?;
if matches!(self.tcb.get_state(), TcpState::Closed) {
if let Some(shutdown) = self.shutdown.take() {
shutdown.notify_one();
}
return std::task::Poll::Ready(Ok(()));
}
}
if let Some(b) = self.tcb.get_unordered_packets() {
self.tcb.add_ack(b.len() as u32);
buf.put_slice(&b);
self.packet_sender
.send(self.create_rev_packet(tcp_flags::ACK, TTL, None, Vec::new())?)
.map_err(|_| Error::from(ErrorKind::UnexpectedEof))?;
return std::task::Poll::Ready(Ok(()));
}
if self.shutdown.is_some() && matches!(self.tcb.get_state(), TcpState::Established) {
self.tcb.change_state(TcpState::FinWait1);
self.packet_to_send = Some(self.create_rev_packet(
tcp_flags::FIN | tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?);
continue;
}
match self.stream_receiver.poll_recv(cx) {
std::task::Poll::Ready(Some(p)) => {
let IpStackPacketProtocol::Tcp(t) = p.transport_protocol() else {
unreachable!()
};
if t.flags() & tcp_flags::RST != 0 {
self.packet_to_send =
Some(self.create_rev_packet(0, DROP_TTL, None, Vec::new())?);
self.tcb.change_state(TcpState::Closed);
return std::task::Poll::Ready(Err(Error::from(
ErrorKind::ConnectionReset,
)));
}
if matches!(
self.tcb.check_pkt_type(&t, &p.payload),
PacketStatus::Invalid
) {
continue;
}
if matches!(self.tcb.get_state(), TcpState::SynReceived(true)) {
if t.flags() == tcp_flags::ACK {
self.tcb.change_last_ack(t.inner().acknowledgment_number);
self.tcb.change_send_window(t.inner().window_size);
self.tcb.change_state(TcpState::Established);
}
} else if matches!(self.tcb.get_state(), TcpState::Established) {
if t.flags() == tcp_flags::ACK {
match self.tcb.check_pkt_type(&t, &p.payload) {
PacketStatus::WindowUpdate => {
self.tcb.change_send_window(t.inner().window_size);
if let Some(ref n) = self.write_notify {
n.wake_by_ref();
self.write_notify = None;
};
continue;
}
PacketStatus::Invalid => continue,
PacketStatus::KeepAlive => {
self.tcb.change_last_ack(t.inner().acknowledgment_number);
self.tcb.change_send_window(t.inner().window_size);
self.packet_to_send = Some(self.create_rev_packet(
tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?);
continue;
}
PacketStatus::RetransmissionRequest => {
self.tcb.change_send_window(t.inner().window_size);
self.tcb.retransmission = Some(t.inner().acknowledgment_number);
if matches!(
self.as_mut().poll_flush(cx),
std::task::Poll::Pending
) {
return std::task::Poll::Pending;
}
continue;
}
PacketStatus::NewPacket => {
// if t.inner().sequence_number != self.tcb.get_ack() {
// dbg!(t.inner().sequence_number);
// self.packet_to_send = Some(self.create_rev_packet(
// tcp_flags::ACK,
// TTL,
// None,
// Vec::new(),
// )?);
// continue;
// }
self.tcb.change_last_ack(t.inner().acknowledgment_number);
self.tcb.add_unordered_packet(
t.inner().sequence_number,
&p.payload,
);
// buf.put_slice(&p.payload);
// self.tcb.add_ack(p.payload.len() as u32);
// self.packet_to_send = Some(self.create_rev_packet(
// tcp_flags::ACK,
// TTL,
// None,
// Vec::new(),
// )?);
self.tcb.change_send_window(t.inner().window_size);
if let Some(ref n) = self.write_notify {
n.wake_by_ref();
self.write_notify = None;
};
continue;
// return std::task::Poll::Ready(Ok(()));
}
PacketStatus::Ack => {
self.tcb.change_last_ack(t.inner().acknowledgment_number);
self.tcb.change_send_window(t.inner().window_size);
if let Some(ref n) = self.write_notify {
n.wake_by_ref();
self.write_notify = None;
};
continue;
}
};
}
if t.flags() == (tcp_flags::FIN | tcp_flags::ACK) {
self.tcb.add_ack(1);
self.packet_to_send = Some(self.create_rev_packet(
tcp_flags::FIN | tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?);
self.tcb.add_seq_one();
self.tcb.change_state(TcpState::FinWait2(true));
continue;
}
if t.flags() == (tcp_flags::PSH | tcp_flags::ACK) {
if !matches!(
self.tcb.check_pkt_type(&t, &p.payload),
PacketStatus::NewPacket
) {
continue;
}
self.tcb.change_last_ack(t.inner().acknowledgment_number);
if p.payload.is_empty()
|| self.tcb.get_ack() != t.inner().sequence_number
{
continue;
}
// self.tcb.add_ack(p.payload.len() as u32);
self.tcb.change_send_window(t.inner().window_size);
// buf.put_slice(&p.payload);
// self.packet_to_send = Some(self.create_rev_packet(
// tcp_flags::ACK,
// TTL,
// None,
// Vec::new(),
// )?);
// return std::task::Poll::Ready(Ok(()));
self.tcb
.add_unordered_packet(t.inner().sequence_number, &p.payload);
continue;
}
} else if matches!(self.tcb.get_state(), TcpState::FinWait1) {
if t.flags() == (tcp_flags::FIN | tcp_flags::ACK) {
self.packet_to_send = Some(self.create_rev_packet(
tcp_flags::ACK,
TTL,
None,
Vec::new(),
)?);
self.tcb.change_send_window(t.inner().window_size);
self.tcb.add_seq_one();
self.tcb.change_state(TcpState::FinWait2(false));
continue;
}
} else if matches!(self.tcb.get_state(), TcpState::FinWait2(true))
&& t.flags() == tcp_flags::ACK
{
self.tcb.change_state(TcpState::FinWait2(false));
}
}
std::task::Poll::Ready(None) => return std::task::Poll::Ready(Ok(())),
std::task::Poll::Pending => return std::task::Poll::Pending,
}
}
}
}
impl AsyncWrite for IpStackTcpStream {
fn poll_write(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<Result<usize, std::io::Error>> {
if (self.tcb.send_window as u64) < self.tcb.avg_send_window.0 / 2
|| self.tcb.is_send_buffer_full()
{
self.write_notify = Some(cx.waker().clone());
return std::task::Poll::Pending;
}
if self.tcb.retransmission.is_some() {
self.write_notify = Some(cx.waker().clone());
if matches!(self.as_mut().poll_flush(cx), std::task::Poll::Pending) {
return std::task::Poll::Pending;
}
}
let packet =
self.create_rev_packet(tcp_flags::PSH | tcp_flags::ACK, TTL, None, buf.to_vec())?;
let seq = self.tcb.seq;
let payload_len = packet.payload.len();
let payload = packet.payload.clone();
self.packet_sender
.send(packet)
.map_err(|_| Error::from(ErrorKind::UnexpectedEof))?;
self.tcb.add_inflight_packet(seq, &payload);
std::task::Poll::Ready(Ok(payload_len))
}
fn poll_flush(
mut self: std::pin::Pin<&mut Self>,
_cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
if let Some(i) = self
.tcb
.retransmission
.and_then(|s| self.tcb.inflight_packets.iter().position(|p| p.seq == s))
.and_then(|p| self.tcb.inflight_packets.get(p))
{
let packet = self.create_rev_packet(
tcp_flags::PSH | tcp_flags::ACK,
TTL,
Some(i.seq),
i.payload.to_vec(),
)?;
self.packet_sender
.send(packet)
.map_err(|_| Error::from(ErrorKind::UnexpectedEof))?;
self.tcb.retransmission = None;
} else if let Some(_i) = self.tcb.retransmission {
#[cfg(feature = "log")]
{
warn!(_i);
warn!(self.tcb.seq);
warn!(self.tcb.last_ack);
warn!(self.tcb.ack);
for p in self.tcb.inflight_packets.iter() {
warn!(p.seq);
warn!("{}", p.payload.len());
}
}
panic!("Please report these values at: https://github.com/narrowlink/ipstack/");
}
std::task::Poll::Ready(Ok(()))
}
fn poll_shutdown(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
let notified = self.shutdown.get_or_insert(Notify::new()).notified();
match Pin::new(&mut Box::pin(notified)).poll(cx) {
std::task::Poll::Ready(_) => std::task::Poll::Ready(Ok(())),
std::task::Poll::Pending => std::task::Poll::Pending,
}
}
}
impl Drop for IpStackTcpStream {
fn drop(&mut self) {
if let Ok(p) = self.create_rev_packet(0, DROP_TTL, None, Vec::new()) {
_ = self.packet_sender.send(p);
}
}
}

View File

@ -1,181 +0,0 @@
use core::task;
use std::{
future::Future,
io::{self, Error, ErrorKind},
net::SocketAddr,
pin::Pin,
task::Poll,
time::Duration,
};
use etherparse::{Ipv4Extensions, Ipv4Header, Ipv6Extensions, Ipv6Header, UdpHeader};
use tokio::{
io::{AsyncRead, AsyncWrite},
sync::mpsc::{self, UnboundedReceiver, UnboundedSender},
time::Sleep,
};
// use crate::packet::TransportHeader;
use crate::{
packet::{NetworkPacket, TransportHeader},
TTL,
};
pub struct IpStackUdpStream {
src_addr: SocketAddr,
dst_addr: SocketAddr,
stream_sender: UnboundedSender<NetworkPacket>,
stream_receiver: UnboundedReceiver<NetworkPacket>,
packet_sender: UnboundedSender<NetworkPacket>,
first_paload: Option<Vec<u8>>,
timeout: Pin<Box<Sleep>>,
udp_timeout: Duration,
mtu: u16,
}
impl IpStackUdpStream {
pub fn new(
src_addr: SocketAddr,
dst_addr: SocketAddr,
payload: Vec<u8>,
pkt_sender: UnboundedSender<NetworkPacket>,
mtu: u16,
udp_timeout: Duration,
) -> Self {
let (stream_sender, stream_receiver) = mpsc::unbounded_channel::<NetworkPacket>();
IpStackUdpStream {
src_addr,
dst_addr,
stream_sender,
stream_receiver,
packet_sender: pkt_sender.clone(),
first_paload: Some(payload),
timeout: Box::pin(tokio::time::sleep_until(
tokio::time::Instant::now() + udp_timeout,
)),
udp_timeout,
mtu,
}
}
pub(crate) fn stream_sender(&self) -> UnboundedSender<NetworkPacket> {
self.stream_sender.clone()
}
fn create_rev_packet(&self, ttl: u8, mut payload: Vec<u8>) -> Result<NetworkPacket, Error> {
match (self.dst_addr.ip(), self.src_addr.ip()) {
(std::net::IpAddr::V4(dst), std::net::IpAddr::V4(src)) => {
let mut ip_h = Ipv4Header::new(0, ttl, 17, dst.octets(), src.octets());
let line_buffer = self.mtu.saturating_sub(ip_h.header_len() as u16 + 8); // 8 is udp header size
payload.truncate(line_buffer as usize);
ip_h.payload_len = payload.len() as u16 + 8; // 8 is udp header size
let udp_header = UdpHeader::with_ipv4_checksum(
self.dst_addr.port(),
self.src_addr.port(),
&ip_h,
&payload,
)
.map_err(|_e| Error::from(ErrorKind::InvalidInput))?;
Ok(NetworkPacket {
ip: etherparse::IpHeader::Version4(ip_h, Ipv4Extensions::default()),
transport: TransportHeader::Udp(udp_header),
payload,
})
}
(std::net::IpAddr::V6(dst), std::net::IpAddr::V6(src)) => {
let mut ip_h = Ipv6Header {
traffic_class: 0,
flow_label: 0,
payload_length: 0,
next_header: 17,
hop_limit: ttl,
source: dst.octets(),
destination: src.octets(),
};
let line_buffer = self.mtu.saturating_sub(ip_h.header_len() as u16 + 8); // 8 is udp header size
payload.truncate(line_buffer as usize);
ip_h.payload_length = payload.len() as u16 + 8; // 8 is udp header size
let udp_header = UdpHeader::with_ipv6_checksum(
self.dst_addr.port(),
self.src_addr.port(),
&ip_h,
&payload,
)
.map_err(|_e| Error::from(ErrorKind::InvalidInput))?;
Ok(NetworkPacket {
ip: etherparse::IpHeader::Version6(ip_h, Ipv6Extensions::default()),
transport: TransportHeader::Udp(udp_header),
payload,
})
}
_ => unreachable!(),
}
}
pub fn local_addr(&self) -> SocketAddr {
self.src_addr
}
pub fn peer_addr(&self) -> SocketAddr {
self.dst_addr
}
}
impl AsyncRead for IpStackUdpStream {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> task::Poll<io::Result<()>> {
if let Some(p) = self.first_paload.take() {
buf.put_slice(&p);
return Poll::Ready(Ok(()));
}
if matches!(self.timeout.as_mut().poll(cx), std::task::Poll::Ready(_)) {
return Poll::Ready(Ok(())); // todo: return timeout error
}
let udp_timeout = self.udp_timeout;
match self.stream_receiver.poll_recv(cx) {
Poll::Ready(Some(p)) => {
buf.put_slice(&p.payload);
self.timeout
.as_mut()
.reset(tokio::time::Instant::now() + udp_timeout);
Poll::Ready(Ok(()))
}
Poll::Ready(None) => Poll::Ready(Ok(())),
Poll::Pending => Poll::Pending,
}
}
}
impl AsyncWrite for IpStackUdpStream {
fn poll_write(
mut self: Pin<&mut Self>,
_cx: &mut task::Context<'_>,
buf: &[u8],
) -> task::Poll<Result<usize, io::Error>> {
let udp_timeout = self.udp_timeout;
self.timeout
.as_mut()
.reset(tokio::time::Instant::now() + udp_timeout);
let packet = self.create_rev_packet(TTL, buf.to_vec())?;
let payload_len = packet.payload.len();
self.packet_sender
.send(packet)
.map_err(|_| Error::from(ErrorKind::UnexpectedEof))?;
std::task::Poll::Ready(Ok(payload_len))
}
fn poll_flush(
self: Pin<&mut Self>,
_cx: &mut task::Context<'_>,
) -> task::Poll<Result<(), io::Error>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(
self: Pin<&mut Self>,
_cx: &mut task::Context<'_>,
) -> task::Poll<Result<(), io::Error>> {
Poll::Ready(Ok(()))
}
}

View File

@ -1,111 +0,0 @@
use std::{io::Error, mem, net::IpAddr};
use etherparse::{IpHeader, Ipv4Extensions, Ipv4Header, Ipv6Extensions, Ipv6Header};
use tokio::sync::mpsc::UnboundedSender;
use crate::{
packet::{NetworkPacket, TransportHeader},
TTL,
};
pub struct IpStackUnknownTransport {
src_addr: IpAddr,
dst_addr: IpAddr,
payload: Vec<u8>,
protocol: u8,
mtu: u16,
packet_sender: UnboundedSender<NetworkPacket>,
}
impl IpStackUnknownTransport {
pub fn new(
src_addr: IpAddr,
dst_addr: IpAddr,
payload: Vec<u8>,
ip: &IpHeader,
mtu: u16,
packet_sender: UnboundedSender<NetworkPacket>,
) -> Self {
let protocol = match ip {
IpHeader::Version4(ip, _) => ip.protocol,
IpHeader::Version6(ip, _) => ip.next_header,
};
IpStackUnknownTransport {
src_addr,
dst_addr,
payload,
protocol,
mtu,
packet_sender,
}
}
pub fn src_addr(&self) -> IpAddr {
self.src_addr
}
pub fn dst_addr(&self) -> IpAddr {
self.dst_addr
}
pub fn payload(&self) -> &[u8] {
&self.payload
}
pub fn ip_protocol(&self) -> u8 {
self.protocol
}
pub async fn send(&self, mut payload: Vec<u8>) -> Result<(), Error> {
loop {
let packet = self.create_rev_packet(&mut payload)?;
self.packet_sender
.send(packet)
.map_err(|_| Error::new(std::io::ErrorKind::Other, "send error"))?;
if payload.is_empty() {
return Ok(());
}
}
}
pub fn create_rev_packet(&self, payload: &mut Vec<u8>) -> Result<NetworkPacket, Error> {
match (self.dst_addr, self.src_addr) {
(std::net::IpAddr::V4(dst), std::net::IpAddr::V4(src)) => {
let mut ip_h = Ipv4Header::new(0, TTL, self.protocol, dst.octets(), src.octets());
let line_buffer = self.mtu.saturating_sub(ip_h.header_len() as u16);
let p = if payload.len() > line_buffer as usize {
payload.drain(0..line_buffer as usize).collect::<Vec<u8>>()
} else {
mem::take(payload)
};
ip_h.payload_len = p.len() as u16;
Ok(NetworkPacket {
ip: etherparse::IpHeader::Version4(ip_h, Ipv4Extensions::default()),
transport: TransportHeader::Unknown,
payload: p,
})
}
(std::net::IpAddr::V6(dst), std::net::IpAddr::V6(src)) => {
let mut ip_h = Ipv6Header {
traffic_class: 0,
flow_label: 0,
payload_length: 0,
next_header: 17,
hop_limit: TTL,
source: dst.octets(),
destination: src.octets(),
};
let line_buffer = self.mtu.saturating_sub(ip_h.header_len() as u16);
payload.truncate(line_buffer as usize);
ip_h.payload_length = payload.len() as u16;
let p = if payload.len() > line_buffer as usize {
payload.drain(0..line_buffer as usize).collect::<Vec<u8>>()
} else {
mem::take(payload)
};
Ok(NetworkPacket {
ip: etherparse::IpHeader::Version6(ip_h, Ipv6Extensions::default()),
transport: TransportHeader::Unknown,
payload: p,
})
}
_ => unreachable!(),
}
}
}

View File

@ -16,14 +16,12 @@ futures = { workspace = true }
libc = { workspace = true }
udp-stream = { workspace = true }
smoltcp = { workspace = true }
etherparse = { workspace = true }
async-trait = { workspace = true }
[dependencies.advmac]
path = "../libs/advmac"
[dependencies.ipstack]
path = "../libs/ipstack"
features = ["log"]
[lib]
path = "src/lib.rs"

View File

@ -1,36 +1,75 @@
use crate::raw_socket::{AsyncRawSocket, RawSocket};
use crate::chandev::ChannelDevice;
use crate::nat::NatRouter;
use crate::proxynat::ProxyNatHandlerFactory;
use crate::raw_socket::AsyncRawSocket;
use advmac::MacAddr6;
use anyhow::{anyhow, Result};
use futures::channel::oneshot;
use futures::{try_join, TryStreamExt};
use ipstack::stream::IpStackStream;
use log::{debug, warn};
use futures::TryStreamExt;
use log::warn;
use smoltcp::iface::{Config, Interface, SocketSet};
use smoltcp::time::Instant;
use smoltcp::wire::{HardwareAddress, IpCidr};
use std::os::fd::AsRawFd;
use std::str::FromStr;
use std::thread;
use std::time::Duration;
use tokio::net::TcpStream;
use udp_stream::UdpStream;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::select;
use tokio::sync::mpsc::{channel, Receiver};
pub trait NetworkSlice {
async fn run(&self) -> Result<()>;
#[derive(Clone)]
pub struct NetworkBackend {
network: String,
interface: String,
}
pub struct NetworkBackend {
pub interface: String,
local: LocalNetworkSlice,
internet: InternetNetworkSlice,
enum NetworkStackSelect<'a> {
Receive(&'a [u8]),
Send(Option<Vec<u8>>),
}
struct NetworkStack<'a> {
tx: Receiver<Vec<u8>>,
kdev: AsyncRawSocket,
udev: ChannelDevice,
interface: Interface,
sockets: SocketSet<'a>,
router: NatRouter,
}
impl NetworkStack<'_> {
async fn poll(&mut self, receive_buffer: &mut [u8]) -> Result<()> {
let what = select! {
x = self.tx.recv() => NetworkStackSelect::Send(x),
x = self.kdev.read(receive_buffer) => NetworkStackSelect::Receive(&receive_buffer[0..x?]),
};
match what {
NetworkStackSelect::Send(packet) => {
if let Some(packet) = packet {
self.kdev.write_all(&packet).await?
}
}
NetworkStackSelect::Receive(packet) => {
if let Err(error) = self.router.process(packet).await {
warn!("router failed to process packet: {}", error);
}
self.udev.rx = Some(packet.to_vec());
let timestamp = Instant::now();
self.interface
.poll(timestamp, &mut self.udev, &mut self.sockets);
}
}
Ok(())
}
}
impl NetworkBackend {
pub fn new(network: &str, interface: &str) -> Result<Self> {
Ok(Self {
network: network.to_string(),
interface: interface.to_string(),
local: LocalNetworkSlice::new(network, interface)?,
internet: InternetNetworkSlice::new(interface)?,
})
}
@ -56,116 +95,41 @@ impl NetworkBackend {
Ok(())
}
pub async fn run(&mut self) -> Result<()> {
try_join!(self.local.run(), self.internet.run()).map(|_| ())
}
}
#[derive(Clone)]
struct LocalNetworkSlice {
network: String,
interface: String,
}
impl LocalNetworkSlice {
fn new(network: &str, interface: &str) -> Result<Self> {
Ok(Self {
network: network.to_string(),
interface: interface.to_string(),
})
pub async fn run(&self) -> Result<()> {
let mut stack = self.create_network_stack()?;
let mut buffer = vec![0u8; 1500];
loop {
stack.poll(&mut buffer).await?;
}
}
fn run_blocking(&self) -> Result<()> {
fn create_network_stack(&self) -> Result<NetworkStack> {
let proxy = Box::new(ProxyNatHandlerFactory::new());
let address = IpCidr::from_str(&self.network)
.map_err(|_| anyhow!("failed to parse cidr: {}", self.network))?;
let addresses: Vec<IpCidr> = vec![address];
let mut socket = RawSocket::new(&self.interface)?;
let kdev = AsyncRawSocket::bind(&self.interface)?;
let (sender, receiver) = channel::<Vec<u8>>(4);
let mut udev = ChannelDevice::new(1500, sender);
let mac = MacAddr6::random();
let mac = HardwareAddress::Ethernet(smoltcp::wire::EthernetAddress(mac.to_array()));
let mac = smoltcp::wire::EthernetAddress(mac.to_array());
let nat = NatRouter::new(proxy, mac);
let mac = HardwareAddress::Ethernet(mac);
let config = Config::new(mac);
let mut iface = Interface::new(config, &mut socket, Instant::now());
let mut iface = Interface::new(config, &mut udev, Instant::now());
iface.update_ip_addrs(|addrs| {
addrs
.extend_from_slice(&addresses)
.expect("failed to set ip addresses");
});
let mut sockets = SocketSet::new(vec![]);
let fd = socket.as_raw_fd();
loop {
let timestamp = Instant::now();
iface.poll(timestamp, &mut socket, &mut sockets);
smoltcp::phy::wait(fd, iface.poll_delay(timestamp, &sockets))?;
}
}
}
impl NetworkSlice for LocalNetworkSlice {
async fn run(&self) -> Result<()> {
let (tx, rx) = oneshot::channel();
let me = self.clone();
thread::spawn(move || {
let _ = tx.send(me.run_blocking());
});
rx.await?
}
}
struct InternetNetworkSlice {
interface: String,
}
impl InternetNetworkSlice {
pub fn new(interface: &str) -> Result<Self> {
Ok(Self {
interface: interface.to_string(),
let sockets = SocketSet::new(vec![]);
Ok(NetworkStack {
tx: receiver,
kdev,
udev,
interface: iface,
sockets,
router: nat,
})
}
async fn process_stream(stream: IpStackStream) {
match stream {
IpStackStream::Tcp(mut tcp) => {
debug!("tcp: {}", tcp.peer_addr());
if let Ok(mut stream) = TcpStream::connect(tcp.peer_addr()).await {
let _ = tokio::io::copy_bidirectional(&mut tcp, &mut stream).await;
} else {
warn!("failed to connect to tcp address: {}", tcp.peer_addr());
}
}
IpStackStream::Udp(mut udp) => {
debug!("udp: {}", udp.peer_addr());
if let Ok(mut stream) = UdpStream::connect(udp.peer_addr()).await {
let _ = tokio::io::copy_bidirectional(&mut stream, &mut udp).await;
} else {
warn!("failed to connect to udp address: {}", udp.peer_addr());
}
}
IpStackStream::UnknownTransport(u) => {
debug!("unknown transport: {}", u.dst_addr());
}
IpStackStream::UnknownNetwork(packet) => {
debug!("unknown network: {:?}", packet);
}
}
}
}
impl NetworkSlice for InternetNetworkSlice {
async fn run(&self) -> Result<()> {
let mut config = ipstack::IpStackConfig::default();
config.mtu(1500);
config.tcp_timeout(std::time::Duration::from_secs(60));
config.udp_timeout(std::time::Duration::from_secs(10));
let socket = AsyncRawSocket::bind(&self.interface)?;
let mut stack = ipstack::IpStack::new(config, socket);
while let Ok(stream) = stack.accept().await {
tokio::spawn(InternetNetworkSlice::process_stream(stream));
}
Ok(())
}
}

73
network/src/chandev.rs Normal file
View File

@ -0,0 +1,73 @@
use log::warn;
// Referenced https://github.com/vi/wgslirpy/blob/master/crates/libwgslirpy/src/channelized_smoltcp_device.rs
use smoltcp::phy::{Checksum, Device};
use tokio::sync::mpsc::Sender;
pub struct ChannelDevice {
pub mtu: usize,
pub tx: Sender<Vec<u8>>,
pub rx: Option<Vec<u8>>,
}
impl ChannelDevice {
pub fn new(mtu: usize, tx: Sender<Vec<u8>>) -> Self {
Self { mtu, tx, rx: None }
}
}
pub struct RxToken(pub Vec<u8>);
impl Device for ChannelDevice {
type RxToken<'a> = RxToken where Self: 'a;
type TxToken<'a> = &'a mut ChannelDevice where Self: 'a;
fn receive(
&mut self,
_timestamp: smoltcp::time::Instant,
) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
self.rx.take().map(|x| (RxToken(x), self))
}
fn transmit(&mut self, _timestamp: smoltcp::time::Instant) -> Option<Self::TxToken<'_>> {
if self.tx.capacity() == 0 {
warn!("ran out of transmission capacity");
return None;
}
Some(self)
}
fn capabilities(&self) -> smoltcp::phy::DeviceCapabilities {
let mut capabilities = smoltcp::phy::DeviceCapabilities::default();
capabilities.medium = smoltcp::phy::Medium::Ethernet;
capabilities.max_transmission_unit = self.mtu;
capabilities.checksum = smoltcp::phy::ChecksumCapabilities::ignored();
capabilities.checksum.tcp = Checksum::Tx;
capabilities.checksum.ipv4 = Checksum::Tx;
capabilities.checksum.icmpv4 = Checksum::Tx;
capabilities.checksum.icmpv6 = Checksum::Tx;
capabilities
}
}
impl smoltcp::phy::RxToken for RxToken {
fn consume<R, F>(mut self, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
f(&mut self.0[..])
}
}
impl<'a> smoltcp::phy::TxToken for &'a mut ChannelDevice {
fn consume<R, F>(self, len: usize, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
let mut buffer = vec![0u8; len];
let result = f(&mut buffer[..]);
if let Err(error) = self.tx.try_send(buffer) {
warn!("failed to transmit packet: {}", error);
}
result
}
}

View File

@ -9,6 +9,9 @@ use tokio::time::sleep;
use crate::backend::NetworkBackend;
mod backend;
mod chandev;
mod nat;
mod proxynat;
mod raw_socket;
pub struct NetworkService {

189
network/src/nat.rs Normal file
View File

@ -0,0 +1,189 @@
// Referenced https://github.com/vi/wgslirpy/blob/master/crates/libwgslirpy/src/router.rs as a very interesting way to implement NAT.
// hypha will heavily change how the original code functions however. NatKey was a very useful example of what we need to store in a NAT map.
use anyhow::Result;
use async_trait::async_trait;
use etherparse::IpNumber;
use etherparse::IpPayloadSlice;
use etherparse::Ipv4Slice;
use etherparse::LinkSlice;
use etherparse::NetSlice;
use etherparse::SlicedPacket;
use etherparse::TcpHeaderSlice;
use etherparse::UdpHeaderSlice;
use smoltcp::wire::EthernetAddress;
use smoltcp::wire::IpAddress;
use smoltcp::wire::IpEndpoint;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt::Display;
#[derive(Debug, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub enum NatKey {
Tcp {
client: IpEndpoint,
external: IpEndpoint,
},
Udp {
client: IpEndpoint,
external: IpEndpoint,
},
Ping {
client: IpAddress,
external: IpAddress,
},
}
impl Display for NatKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
NatKey::Tcp { client, external } => write!(f, "TCP {client} -> {external}"),
NatKey::Udp { client, external } => write!(f, "UDP {client} -> {external}"),
NatKey::Ping { client, external } => write!(f, "Ping {client} -> {external}"),
}
}
}
#[async_trait]
pub trait NatHandler: Send {
async fn receive(&self, packet: &[u8]) -> Result<()>;
}
pub struct NatTable {
inner: HashMap<NatKey, Box<dyn NatHandler>>,
}
impl NatTable {
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
}
#[async_trait]
pub trait NatHandlerFactory: Send {
async fn nat(&self, key: NatKey) -> Option<Box<dyn NatHandler>>;
}
pub struct NatRouter {
_mac: EthernetAddress,
factory: Box<dyn NatHandlerFactory>,
table: NatTable,
}
impl NatRouter {
pub fn new(factory: Box<dyn NatHandlerFactory>, mac: EthernetAddress) -> Self {
Self {
_mac: mac,
factory,
table: NatTable::new(),
}
}
pub async fn process(&mut self, data: &[u8]) -> Result<()> {
let packet = SlicedPacket::from_ethernet(data)?;
let Some(ref link) = packet.link else {
return Ok(());
};
let LinkSlice::Ethernet2(ref ether) = link else {
return Ok(());
};
let _mac = EthernetAddress(ether.destination());
let Some(ref net) = packet.net else {
return Ok(());
};
match net {
NetSlice::Ipv4(ipv4) => {
self.process_ipv4(data, ipv4).await?;
}
_ => {
return Ok(());
}
}
Ok(())
}
pub async fn process_ipv4<'a>(&mut self, data: &[u8], ipv4: &Ipv4Slice<'a>) -> Result<()> {
let source_addr = IpAddress::Ipv4(ipv4.header().source_addr().into());
let dest_addr = IpAddress::Ipv4(ipv4.header().destination_addr().into());
match ipv4.header().protocol() {
IpNumber::TCP => {
self.process_tcp(data, source_addr, dest_addr, ipv4.payload())
.await?;
}
IpNumber::UDP => {
self.process_udp(data, source_addr, dest_addr, ipv4.payload())
.await?;
}
_ => {}
}
Ok(())
}
pub async fn process_tcp<'a>(
&mut self,
data: &'a [u8],
source_addr: IpAddress,
dest_addr: IpAddress,
payload: &IpPayloadSlice<'a>,
) -> Result<()> {
let header = TcpHeaderSlice::from_slice(payload.payload)?;
let source = IpEndpoint::new(source_addr, header.source_port());
let dest = IpEndpoint::new(dest_addr, header.destination_port());
let key = NatKey::Tcp {
client: source,
external: dest,
};
self.process_nat(data, key).await?;
Ok(())
}
pub async fn process_udp<'a>(
&mut self,
data: &'a [u8],
source_addr: IpAddress,
dest_addr: IpAddress,
payload: &IpPayloadSlice<'a>,
) -> Result<()> {
let header = UdpHeaderSlice::from_slice(payload.payload)?;
let source = IpEndpoint::new(source_addr, header.source_port());
let dest = IpEndpoint::new(dest_addr, header.destination_port());
let key = NatKey::Udp {
client: source,
external: dest,
};
self.process_nat(data, key).await?;
Ok(())
}
pub async fn process_nat(&mut self, data: &[u8], key: NatKey) -> Result<()> {
let handler: Option<&mut Box<dyn NatHandler>> = match self.table.inner.entry(key) {
Entry::Occupied(entry) => Some(entry.into_mut()),
Entry::Vacant(entry) => {
if let Some(handler) = self.factory.nat(key).await {
Some(entry.insert(handler))
} else {
None
}
}
};
if let Some(handler) = handler {
handler.receive(data).await?;
}
Ok(())
}
}

135
network/src/proxynat.rs Normal file
View File

@ -0,0 +1,135 @@
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use anyhow::{anyhow, Result};
use async_trait::async_trait;
use etherparse::{SlicedPacket, UdpSlice};
use log::{debug, warn};
use smoltcp::{
phy::{Checksum, ChecksumCapabilities},
wire::{IpAddress, IpEndpoint},
};
use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
select,
sync::mpsc::channel,
};
use tokio::{sync::mpsc::Receiver, sync::mpsc::Sender};
use udp_stream::UdpStream;
use crate::nat::{NatHandler, NatHandlerFactory, NatKey};
pub struct ProxyNatHandlerFactory {}
struct ProxyUdpHandler {
external: IpEndpoint,
sender: Sender<Vec<u8>>,
}
impl ProxyNatHandlerFactory {
pub fn new() -> Self {
Self {}
}
}
#[async_trait]
impl NatHandlerFactory for ProxyNatHandlerFactory {
async fn nat(&self, key: NatKey) -> Option<Box<dyn NatHandler>> {
debug!("creating proxy nat entry for key: {}", key);
match key {
NatKey::Udp {
client: _,
external,
} => {
let (sender, receiver) = channel::<Vec<u8>>(4);
let mut handler = ProxyUdpHandler { external, sender };
if let Err(error) = handler.spawn(receiver).await {
warn!("unable to spawn udp proxy handler: {}", error);
None
} else {
Some(Box::new(handler))
}
}
_ => None,
}
}
}
#[async_trait]
impl NatHandler for ProxyUdpHandler {
async fn receive(&self, data: &[u8]) -> Result<()> {
self.sender.try_send(data.to_vec())?;
Ok(())
}
}
enum ProxySelect {
External(usize),
Internal(Vec<u8>),
Closed,
}
impl ProxyUdpHandler {
async fn spawn(&mut self, receiver: Receiver<Vec<u8>>) -> Result<()> {
let external_addr = match self.external.addr {
IpAddress::Ipv4(addr) => SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(addr.0[0], addr.0[1], addr.0[2], addr.0[3])),
self.external.port,
),
IpAddress::Ipv6(_) => return Err(anyhow!("IPv6 unsupported")),
};
let socket = UdpStream::connect(external_addr).await?;
tokio::spawn(async move {
if let Err(error) = ProxyUdpHandler::process(socket, receiver).await {
warn!("processing of udp proxy failed: {}", error);
}
});
Ok(())
}
async fn process(mut socket: UdpStream, mut receiver: Receiver<Vec<u8>>) -> Result<()> {
let mut checksum = ChecksumCapabilities::ignored();
checksum.udp = Checksum::Tx;
checksum.ipv4 = Checksum::Tx;
checksum.tcp = Checksum::Tx;
let mut external_buffer = vec![0u8; 2048];
loop {
let selection = select! {
x = receiver.recv() => if let Some(data) = x {
ProxySelect::Internal(data)
} else {
ProxySelect::Closed
},
x = socket.read(&mut external_buffer) => ProxySelect::External(x?),
};
match selection {
ProxySelect::External(size) => {
let data = &external_buffer[0..size];
debug!("UDP from external: {:?}", data);
}
ProxySelect::Internal(data) => {
debug!("udp socket to handle data: {:?}", data);
let packet = SlicedPacket::from_ethernet(&data)?;
let Some(ref net) = packet.net else {
continue;
};
let Some(ip) = net.ip_payload_ref() else {
continue;
};
let udp = UdpSlice::from_slice(ip.payload)?;
debug!("UDP from internal: {:?}", udp.payload());
socket.write_all(udp.payload()).await?;
}
ProxySelect::Closed => warn!("UDP socket closed"),
}
}
}
}

View File

@ -1,12 +1,7 @@
use anyhow::Result;
use futures::ready;
use log::debug;
use smoltcp::phy::{Device, DeviceCapabilities, Medium};
use smoltcp::time::Instant;
use std::cell::RefCell;
use std::os::unix::io::{AsRawFd, RawFd};
use std::pin::Pin;
use std::rc::Rc;
use std::task::{Context, Poll};
use std::{io, mem};
use tokio::io::unix::AsyncFd;
@ -121,107 +116,6 @@ impl Drop for RawSocketHandle {
}
}
#[derive(Debug)]
pub struct RawSocket {
lower: Rc<RefCell<RawSocketHandle>>,
mtu: usize,
}
impl AsRawFd for RawSocket {
fn as_raw_fd(&self) -> RawFd {
self.lower.borrow().as_raw_fd()
}
}
impl RawSocket {
pub fn new(name: &str) -> io::Result<RawSocket> {
let mut lower = RawSocketHandle::new(name)?;
lower.bind_interface()?;
let mtu = lower.mtu;
Ok(RawSocket {
lower: Rc::new(RefCell::new(lower)),
mtu,
})
}
}
impl Device for RawSocket {
type RxToken<'a> = RxToken
where
Self: 'a;
type TxToken<'a> = TxToken
where
Self: 'a;
fn capabilities(&self) -> DeviceCapabilities {
let mut capabilities = DeviceCapabilities::default();
capabilities.medium = Medium::Ethernet;
capabilities.max_transmission_unit = self.mtu;
capabilities
}
fn receive(&mut self, _timestamp: Instant) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
let lower = self.lower.borrow_mut();
let mut buffer = vec![0; self.mtu];
match lower.recv(&mut buffer[..]) {
Ok(size) => {
buffer.resize(size, 0);
let rx = RxToken { buffer };
let tx = TxToken {
lower: self.lower.clone(),
};
Some((rx, tx))
}
Err(err) if err.kind() == io::ErrorKind::WouldBlock => None,
Err(err) => panic!("{}", err),
}
}
fn transmit(&mut self, _timestamp: Instant) -> Option<Self::TxToken<'_>> {
Some(TxToken {
lower: self.lower.clone(),
})
}
}
#[doc(hidden)]
pub struct RxToken {
buffer: Vec<u8>,
}
impl smoltcp::phy::RxToken for RxToken {
fn consume<R, F>(mut self, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
f(&mut self.buffer[..])
}
}
#[doc(hidden)]
pub struct TxToken {
lower: Rc<RefCell<RawSocketHandle>>,
}
impl smoltcp::phy::TxToken for TxToken {
fn consume<R, F>(self, len: usize, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
let lower = self.lower.borrow_mut();
let mut buffer = vec![0; len];
let result = f(&mut buffer);
match lower.send(&buffer[..]) {
Ok(_) => {}
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
debug!("phy: tx failed due to WouldBlock")
}
Err(err) => panic!("{}", err),
}
result
}
}
#[repr(C)]
#[derive(Debug)]
struct Ifreq {